
Discontinuous Galerkin Methods on Moving Domains with Large Deformations

by

Luming Wang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Per-Olof Persson, Chair
Professor John Strain

Professor Sanjay Govindjee

Spring 2015

Discontinuous Galerkin Methods on Moving Domains with Large Deformations

Copyright 2015
by

Luming Wang

1

Abstract

Discontinuous Galerkin Methods on Moving Domains with Large Deformations

by

Luming Wang

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Per-Olof Persson, Chair

We present two different numerical approaches for solving compressible flows on moving
domains with high-order accuracy. The approaches are base on discontinuous Galerkin (DG)
methods and are particularly designed for addressing the large deformation problems as the
domain moves.

A moving-mesh technique is first introduced to improve the mesh quality with the domain
deforming. The technique moves the mesh nodes by DistMesh algorithm[60] and locally
changes the mesh topology by flipping edges or faces, which can be applied in both 2D and
3D. Moreover, some local density control operations are also developed to add or remove the
mesh nodes to change the mesh adaptivity.

Our first numerical scheme is formulated on a space-time framework using a nodal DG
discretization on space-time domains with appropriate numerical fluxes for the first and the
second-order terms, respectively. The scheme is implicit, and we solve the resulting non-
linear systems using a parallel Newton-Krylov solver. Along with the numerical scheme, two
efficient algorithms for constructing globally conforming space-time slab meshes are given,
based on our moving-mesh technique.

The second approach employs DG discreatization with arbitrary-Eulerian-Lagrangian
(ALE) framework by solving equations based on smooth mappings. An efficient local L2

projection is used for transferring solutions when mesh topology change happens.
We test our two approaches by a number of numerical cases in both 2D and 3D. The

tests involve convergence tests as well as simulations of laminar flows, which shows that
the proposed methods achieve high-order accuracy and are able to handle problems with
complex geometric motions.

i

To My Family

I love you all.

ii

Contents

Contents ii

List of Figures iv

List of Tables viii

1 Introduction 1
1.1 Prior Work . 2
1.2 Overview . 4

2 Governing Equations 6
2.1 Compressible Navier-Stokes Equations . 6
2.2 Isentropic Flow . 7
2.3 Boundary Conditions . 8

3 Moving-Mesh Strategy 9
3.1 Mesh Node Smoothing . 9
3.2 Local Mesh Topology Change . 11
3.3 Mesh Adaptivity . 13
3.4 The algorithm . 15

4 Space-Time Discontinuous Galerkin Methods 17
4.1 Space-Time Formulation . 17
4.2 Numerical Scheme . 18

4.2.1 Discretization of the Euler Equations 18
4.2.2 Discretization of the Viscosity Terms 21
4.2.3 Newton-Krylov Solver . 23

4.3 Space-Time Mesh Generation for 2D Problems 24
4.3.1 Basic Idea . 24
4.3.2 Local Triangulation of Prisms . 26
4.3.3 Diagonal Matching and the Global Algorithm 29

4.4 Space-Time Mesh Generation for 3D Problems 34
4.4.1 An Alternative Algorithm for 2D Problems 34

iii

4.4.2 Generalization of Prisms, Lateral Faces and Diagonals 37
4.4.3 Extension to 3D Problems . 39

5 Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Methods with
Local L2 Projections 43
5.1 Arbitrary Lagrangian-Eulerian Formulation 43
5.2 Numerical Scheme . 45

5.2.1 Discretization . 45
5.2.2 Geometric Conservation Law . 46
5.2.3 Temporal Integration . 46

5.3 Local L2 Projections . 47
5.3.1 Formulation . 48
5.3.2 Implementation . 50

6 Numerical Results 54
6.1 Euler Vortex . 54

6.1.1 2D Case . 54
6.1.2 3D Case . 58

6.2 Spinning Cross . 60
6.3 Pitching Tandem Airfoils . 63
6.4 Airfoil with a Deploying Spoiler . 65
6.5 Double Vertical Axis Wind Turbines . 66
6.6 Rotating 3D Ellipsoid . 74

7 Conclusion & Future Work 76

Bibliography 77

iv

List of Figures

3.1 Force-based smoothing. The plot shows the net force exerted on one node. (Image
from [61]) . 10

3.2 Local topology change in 2D.(Image from [61]) 12
3.3 Change of local element connectivity in 3D. The numbers of old and new elements

are shown above the arrows. 12
3.4 Density Control Operations in 2D. These operations are used to control the local

mesh density by adding or removing nodes. 14
3.5 Density Control Operations in 3D. These operations are used to control the local

mesh density by adding or removing nodes. 14

4.1 An example for node distribution of DG method. Here, p = 2 and 6 nodes are
chosen within each element K. (Image from [61]) 19

4.2 Space-Time Mesh Generation. The left figure illustrates two mesh layers at time
t and t + ∆t, and the right figure shows a corresponding 3D space-time mesh
between the two layers. The blue faces show a cross-section of the tetrahedral
mesh. 25

4.3 Tetrahedral Triangulation in 2D. The left plot illustrates a valid triangulation for
an element without edge flips, and the right plot shows a triangulation for a pair
of elements with a flipped edge. 25

4.4 All the valid triangulations of a triangular prism (left) and of a quadrangular
prism (right). The sets below each triangulation show the values of the corre-
sponding sign functions. 28

4.5 Examples of triangulated prisms corresponding to local density control operations. 29
4.6 Two examples of updating paths. Each triangle represents a triangular prism and

each quadrilateral represents a quadrangular prism. The yellow element is the
root prism V , the green elements are prisms at state either 1 or 2, and the red
elements are already triangulated, i.e., at state 3. The purple elements denote an
updating path directed by the black arrows. The corresponding case number that
each purple element belongs to is also shown. The example path on the left ends
when it returns to V , and the example path on the right ends with a triangular
prism belonging to Case 1. 32

4.7 Triangulation of polygonal prisms with an additional interior node. 35

v

4.8 An example of an invalid triagulation for a non-convex polygon. The point marked
in red is the inserted node. 36

4.9 ‘Prisms’ and ‘Lateral Faces’ in 2D, 3D and 4D. In each case, the right is a ‘prism’
and the left is one of its ‘lateral faces’. 39

5.1 The mapping between the reference domain and the physical domain in the ALE
framework. 44

5.2 Moving Meshes for a Spinning Cross without Topology Change. Three sample
plots are given to show the mesh motion under the ALE framework. 48

5.3 An Example of Global Remeshing. The 3rd plot overlaps mesh 1 with mesh 2. . 50
5.4 An illustration of the process in algorithm 5.1. Phase I: Select blue nodes to move;

Phase II: Update interior nodes by force-based smoothing; Phase III: Select pairs
of elements in red for flipping; Phase IV: Change the local connectivity within
each pair of red elements. 51

5.5 Local element splitting in 2D. 52
5.6 Tetrahedral splitting for 3D operations. In each plot, the triangulation of the

middle polygon is on the left and the corresponding 3D triangulation is on the
right. The red cross is the intersection between the middle polygon and the
connecting line between the top and the bottom nodes. 52

6.1 An illustration of the moving meshes. The five blues nodes are rotated about the
center of the domain in a rigid manner, which induces other vertex movements
and local element flipping. Note that θ is the degrees that the blue nodes have
rotated about the center. 55

6.2 Space-Time Convergence Test for the Euler Vortex Problem. The top three plots
are samples of space-time meshes with ∆t = h = 0.3125 and p = 3. Below each
mesh, the corresponding solutions are shown in pressure fields. The pressure plots
uses the ’hot‘ colormap in Matlab with range [68.5, 71.6]. The bottom plot shows
the convergence results for p = 1, 2 and 3. 57

6.3 Euler-Vortex Convergence Plot for the ALE Method with Local L2 Projections. 58
6.4 Convergence Test for the 3D Euler Vortex Problem. The upper left and middle

plots are two sample meshes at the initial and the final time, respectively. These
meshes are generated on a 10× 10× 10 cube. The blue faces show a cross-section
of the tetrahedral mesh and the green faces are the outside surfaces of the cube.
The red nodes are rotated rigidly. The right plot shows some sample pressure
isosurfaces, which uses the ‘jet’ colormap in Matlab with range [2.2377, 2.5871]. . 59

6.5 Initial Spatial Mesh of a Spinning Cross. The left zoom-in figure is for the upper
right part of the initial mesh on the right. 60

6.6 Examples of Spatial Meshes and Space-Time Mesh Slabs. Note that to better
illustrate our space-time mesh structure, we rescale the thickness of our space-
time mesh slabs, which is not equal to the real ∆t we used for the simulation. . 61

vi

6.7 Space-Time DG solutions for Compressible Navier-Stokes flow in a domain with a
spinning cross (entropy). It uses the reverse ‘hot’ colormap in Matlab with range
[17.85, 18.05]. 62

6.8 ALE DG solutions for Compressible Navier-Stokes flow in a domain with a spin-
ning cross (entropy). It uses the reverse ‘hot’ colormap in Matlab with range
[18.02, 18.32]. 63

6.9 Schematics of the pitching tandem airfoil problem. 64
6.10 Sample Spatial Meshes of Two Pitching Tandem Airfoils. 64
6.11 Numerical results for the pitching tandem airfoils. There are solution fields for

both space-time and ALE methods (entropy of the flow at 4 time instances). It
uses the ‘jet’ colormap in Matlab with range [17.79, 18.18]. 66

6.12 The drag and lift forces on the pitching tandem NACA0012 airfoils as a function
of time for both the space-time and the ALE methods. 67

6.13 Spatial Meshes of the Airfoil with a Deploying Spoiler. 68
6.14 Space-Time DG Solutions for Compressible Navier-Stokes flow around an airfoil

with a deploying spoiler. It uses the reverse ‘hot’ colormap in Matlab with range
[17.79, 18.18]. 69

6.15 Drag and lift coefficients around the NACA0012 airfoil with a deploying spoiler
as a function of time. 69

6.16 Schematics of the double vertical axis wind turbines. (Image from [38]) 70
6.17 Unstructured Mesh for Double VAWTs. The initial mesh is showed on the top,

where all the edge flipping operations happen in the area colored in red. In order
to show the mesh motion, three zoom-in plots are placed on the bottom for the
area circled by a yellow window in the top plot. 71

6.18 Numerical results for double VAWTs. Sample solutions are plotted for the y-
component of the velocity and for the vorticity field, respectively. The plots for
y-component of the velocity used reverse RdBu colormap in Python’s matplotlib
module. The color range is [0.003656, 0.014624]. The plots for vorticity used
RdBu colormap with the color range is [−50, 50]. 72

6.19 Sample 3D Meshes for Spinning Ellipsoid Problem. The surface mesh of the
inside ellipsoid and outside sphere is colored in green. The blue faces show a
cross-section of the spherical mesh. 73

6.20 Sample Solutions for Spinning Ellipsoid Problem. The surface of the spinning
ellipsoid is painted in green and we plot the Mach solution on the entropy isosur-
face. It uses the ‘jet’ colormap in Matlab with range [0, 0.25]. 75

vii

List of Algorithms

3.1 Moving-Mesh Startegy . 15
4.1 Space-Time Mesh Generation with Path Marching 33
4.2 Space-Time Mesh Generation with Insertion of Additional Nodes 38
5.1 Discontinuous Galerkin ALE Method with Local L2 Projections 51

viii

List of Tables

4.1 The summary of sign function value combination for local triangulations. 28
4.2 Summary of the geometric properties for prisms in 2D, 3D and 4D. 39

5.1 Butcher’s Array for the DIRK3 scheme. 47

ix

Acknowledgments

First of all, I would like to thank my advisor, Professor Per-Olof Persson for motivating and
encouraging me to work on this interesting research topic. I would not complete this Ph.D.
dissertation without his insightful guidance and kind support. To me, he is not only an
outstanding advisor in academia, but a good friend that I can frankly share my thoughts
and feelings. It has been a fairly pleasant experience to work with him and he helps me find
my interest and strength, improve my personality and build my future career.

I also feel grateful to my other committee members, Professor John Strain and Professor
Sanjay Govindjee to provide me with valuable feedback and suggestions. In particular, I
appreciate every piece of great advice from Professor Strain on teaching sections, passing
the qualifying exam and revising journal papers. I would thank Professor Jon Wilkening for
joining the committee of my qualifying exam, Professor Ming Gu for guiding me on the work
of numerical linear algebra, and Professor Alexandre Chorin and Professor James Sethian
for leading our mathematics group in Lawrence Berkeley Laboratory and making us like a
big family.

I would acknowledge my colleagues Meire Fortunato, Bradley Froehle, Samuel Kanner
and Christopher Melgaard. I enjoy our collaboration and discussion, where many of my
research ideas were inspired. I would also thank my colleagues Jue Chen, Jeff Donatelli,
Long Jin, Anna Lieb, Weihua Liu, Fei Lu, Matthias Morzfeld, Benjamin Preskill, Wei Qi,
Qingchun Ren, Robert Saye and Ethan Van Andel. I’m glad to meet you all during my
graduate years.

I must express my greatest gratitude to my wife Yanan Pei and my other family members.
Whenever I feel disappointed or exhausted, I know they are always my most solid and reliable
support, and encourage me keeping moving forward.

Finally, I would like to thank the support from the AFOSR Computational Mathemat-
ics program under grant FA9550-10-1-0229; the Alfred P. Sloan foundation; the Lawrence
Berkeley National Laboratory and the National Energy Research Scientic Computing Center
funded by the Director, Oce of Science, Computational and Technology Research, U.S. De-
partment of Energy under Contract No. DE-AC02-05CH11231; and the Simons Fellowship.

1

Chapter 1

Introduction

Many practical applications involve time-varying geometries such as rotor-stator flows, flap-
ping flight or fluid-structure interactions. Comparing with building real models and car-
rying out physical experiments, high fidelity numerical simulations are acknowledged to be
a promising alternative approach for studying those engineering problems due to its low
time and manufacturing cost. For this reason, in the field of computational fluid mechanics,
turbulent flow simulation on deforming domains becomes one of the most popular research
topics.

However, such problems face a few challenges with respect to the numerical methods.
First, since the physical domains are moving, the computational meshes must be generated
in a way that is able to track the geometric motions. There are mainly two classes of
methods to address this issue: embedded domain method and body-fitted method. The
former one depends on a Cartesian grid and then embeds the irregular domain into the grid.
This approach allows the computational mesh not necessarily to be aligned with the domain
boundary and benefits from the fact that the generation of a Cartesian grid is trivial. Many
popular schemes are invented following these ideas such as the embedded boundary/cut-cell
methods [14, 30], the immersed boundary method [39, 63], and the fictitious domain methods
[28, 82]. These schemes are often simple and highly efficient, but somewhat difficult to modify
for high-order accuracy close to the boundaries and for thin boundary layers. On the other
hand, the body-fitted method employs unstructured meshes and automatically remove the
difficulty of cell cutting around the boundary. The central concern about these strategies
is how to move the mesh in order to guarantee that the computational mesh can always fit
with good mesh quality even for complicated geometry motions.

Besides the meshing issues, since these simulations always involve large-scale computa-
tion, an efficient and robust numerical solver is important in order to reduce the computa-
tional cost and provide the sufficiently accurate test results. Therefore, it is widely believed
that high-order numerical methods will become standard in the future numerical engineering
software. A number of high-order numerical methods have been proposed for solving flow
problems including spectral methods, streamline-upwind/Petrov-Galerkin (SUPG) and high-
order volume methods. Among these, discontinuous Galerkin (DG) methods have received

CHAPTER 1. INTRODUCTION 2

much attention during the last decade due to their ability to produce stable and high-order
accurate discretizations of conservation laws on fully unstructured meshes [12, 55]. In par-
ticular for challenging fluid problems, the low dissipation of the DG schemes make them
ideal for the simulation of turbulent flows with complex vortical structures and non-linear
interactions.

Various solutions have been developed for compressible/incompressible flows on deformable
domains, but most of them are only reliable for solving problems with mild deformation. It
still lacks an effective numerical approach to deal with the cases when the domain deforma-
tion is large and/or complex. In the following work, we focus on the study of high-order
DG methods on fully unstructured meshes, in particular with the goal of addressing moving-
domain problems with large deformation.

1.1 Prior Work

The so-called space-time framework are fully consistent discretizations that allow for arbi-
trary changes of the domain in both space and time [47]. These methods essentially treats
the time-dependency with the same technique as the spatial terms, but exploiting the causal
nature of the equations to improve the efficiency. Some of the early work on space-time
methods include [33, 35], where a Galerkin/least square finite element method was intro-
duced for solving classical elastodynamics problems. Extensions to flow problems on moving
domains, with SUPG stabilization, where developed in [3, 49]. A priori and a posteriori er-
ror estimates for a space-time finite element discretization for linear second order hyperbolic
equations were presented in [37].

General formulations and analyses of space-time DG methods were presented in [79, 80].
The methods have been used for a number of practical applications, for example in [40] where
a space-time DG method was demonstrated on several aerodynamic applications. Formula-
tions for the Oseen equations where developed in [78], and for two-fluid flows in [71]. Since
the space-time DG formulations lead to fully implicit discretizations, many previous authors
have studied specialized solution techniques. For example, [41] provided a pseudo-time step-
ping method to deal with the time evolution, and an h-multigrid solver was introduced in
[42]. Also, space-time hybridizable discontinuous Galerkin (HDG) methods were recently
proposed in [66, 67].

Most work on space-time DG methods have focused on spatial meshes that do not undergo
connectivity changes throughout the time evolution. The corresponding space-time meshes
are then essentially composed of extruded prism-elements, possibly deforming in time. Some
previous work have explored time adaptivity, for example in [48] where a space-time finite
volume method with nonuniform time stepping was developed. However, to handle moving
domain problems with large deformations, fully unstructured space-time meshes are required
since the spatial mesh topology has to be modified during the simulation. Previous work
on fully unstructured space-time meshes includes [65], which proposed a space-time finite
volume method on unstructured meshes generated by a standard 3D mesh generator. A

CHAPTER 1. INTRODUCTION 3

so-called tent-pitcher space-time mesh generator based on an advancing front method was
introduced in [76, 77] with various extensions in [1, 23, 74]. Finally, in [8] space-time meshes
were generated by connecting spatial meshes using a Delaunay approach, which required
some additional techniques to eliminate sliver elements.

As an alternative, the Arbitrary Lagrangian-Eulerian (ALE) method [21, 32] is able to
produce high-order accurate solutions to a wide range of problems associated with body-fitted
grid motion. It originates from solid mechanics, where the Lagrangian framework is widely
used to track the material deformation. However, for fluid problems, this approach may result
in severe mesh distortions, which will eventually break the simulation down. Instead, ALE
method combines the advantages of both Eulerian and Lagrangian frameworks and has been
proved to be powerful for simulating turbulent flows on moving domains. The formulations
of ALE method are based on a time-varying mapping and a deforming grid that conforms
to the domain boundary, which is compensated for by a modification of the equations. Since
the first time when ALE formulation was proposed, it has been developed to solve various
problems numerically: a finite element method with an ALE framework was presented in
[34] for incompressible viscous flows; an application to incompressible hyperelasticity can be
found in [87]; the ALE analysis for free surface flow was studied in [9] and an analysis of the
nonlinear stability was discussed in [24].

The discontinuous Galerkin method along with an ALE framework for compressible vis-
cous flows was introduced in [46]. [57] implemented a mapping-based ALE formulation with a
compact discontinuous Galerkin (CDG) methods and a novel way to enforce the so-called ge-
ometric conservation law (GCL) using an additional set of ODEs. [52] applied this approach
to two-phase flow problems. [51] computes conservation laws on moving meshes using a dis-
continuous Galerkin Spectral Element Method (DGSEM). [50] derived an ALE-DG scheme
which ensures the satisfaction of the GCL condition. ALE-DG methods for fluid-structure
interaction were proposed in [27, 83].

However, a main drawback with the ALE approach is that it is difficult to deform the
mesh without inverting the elements as the domain undergoes large deformations. That is,
in order for the deformation mapping to be smooth, the mesh topology must be fixed which
means that the initial element connectivities have to remain unchanged throughout the time
evolution. This restriction can be severe for large or complex deformations. Remeshing is
then commonly employed to maintain well-shaped elements, but in order to transfer the
solutions between the original and the recomputed mesh, careful treatment is needed to
obtain accuracy and stability. Many interpolation techniques have been proposed, as well
as several topology-change strategies. [81] provides an ALE formulation with a new fixed
grid approach. [69] delivered an adaptive remeshing strategy for flow simulations. Several
effective mesh motion techniques for large deformation problems in 3D were shown in [5].
A technique for incorporating mesh adaption was presented in [15]. [53, 2] studied an ALE
framework with edge flipping techniques and [36, 29] developed an edge-based finite volume
solver with mesh topology changes. However, in general the accuracy is easily reduced by
additional numerical errors introduced from solution transferring, and thus so far it appears
that satisfactory high-order accurate ALE methods for large boundary deformations have

CHAPTER 1. INTRODUCTION 4

not yet been developed.

1.2 Overview

In this thesis, we improve the two numerical approaches mentioned in section 1.1, respec-
tively, for solving the compressible flow problems on moving domains with large deformation.
Our ideas both originate from a novel moving mesh strategy, which is able to handle arbitrary
geometric motions efficiently and robustly. This moving mesh strategy involves a number of
operations including mesh node smoothing, edge swapping and mesh adaptivity. The main
advantage is that the proposed algorithm only changes the mesh topology locally, which
provides opportunities to largely simplify the numerical schemes for a space-time or an ALE
framework.

First, based on the moving mesh strategy, we present a space-time discontinuous Galerkin
discretization of the compressible Navier-Stokes equations and a novel fully unstructured
space-time mesh generation procedure. Our space-time discretizations are derived from the
compact discontinuous Galerkin method [54], they are higher-dimensional and fully implicit,
and we solve the resulting nonlinear systems of equations using efficient parallel Newton-
Krylov solvers [58, 56]. For space-time mesh generation, unlike the previous work outlined
above, our procedures improve the spatial meshes by the moving-mesh algorithm rather than
regenerate meshes from scratch at each time step. Moreover, based on this particular spatial-
mesh improvement strategy, our space-time meshes are fully unstructured and generated
efficiently and robustly. Two algorithms for space-time mesh generation are developed, both
only depending on the combinatoric properties of how the vertices are connected. The first
one is a depth-first search algorithm, mainly for 2D problems. Since no additional nodes are
inserted besides those on the spatial meshes, its computational cost for solving the discretized
systems is kept at a minimum. The second algorithm allows the addition of a few new nodes,
which works well for both 2D and 3D problems. Lastly, the order of accuracy of the resulting
space-time discontinuous Galerkin scheme can be arbitrarily high in both space and time,
provided suitable curved meshes can be generated.

Next, we propose a simple combined approach based on a nodal DG formulation and an
ALE framework. The discretization is based on the work in [57], which solves a modified
version of compressible Navier-Stokes equations using a DG scheme. To deal with large
deformation problems, we rely on a local L2 projection operator to transfer the solution
between the old and the new meshes. The standard L2 projections are straight-forward to
formulate and have many desirable properties, but the implementation is complicated and
costly for high-dimensional unstructured meshes, which limits their practical applications.
But we again take advantage of the locality properties of our mesh adjustment during the
domain motion and only carry out the corresponding L2 projections locally, which signifi-
cantly simplifies its implementation. The numerical results show that our local L2 projection
is highly efficient and can maintain high-order accuracy, even with frequent mesh topology
changes, compared to other interpolation techniques.

CHAPTER 1. INTRODUCTION 5

The rest of this thesis is organized as follows: chapter 2 introduces the governing equations
which we aim to solve; chapter 3 describes the details of our moving mesh algorithm in both
2D and 3D; chapter 4 includes the general formulation of our space-time DG scheme and
two algorithms for space-time mesh generation; chapter 5 discusses the ALE framework with
the local L2 projection; chapter 6 presents numerical results for our two numerical methods,
where the high-order accuracy and the ability to address large deformation are tested with
various numerical simulations; finally, brief conclusions and suggestions for future work are
given in chapter 7.

6

Chapter 2

Governing Equations

2.1 Compressible Navier-Stokes Equations

We consider the compressible Navier-Stokes equations [55] as follows:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + Pδij) =

∂

∂xj
(τij) for i = 1, 2, 3

∂

∂t
(ρE) +

∂

∂xj
(uj(ρE + P)) =

∂

∂xj
(uiτij −Θj) (2.1)

with some appropriate boundary conditions imposed on the domain boundary and initial
conditions at t = 0. The viscous stress tensor τij and heat flux Θi are given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
(2.2)

and

Θi = − µ

Pr

∂

∂xi

(
E +

P

ρ
− 1

2
u2
k

)
, (2.3)

where δij is the Kronecker delta function, µ is the viscosity coefficient and Pr is the Prandtl
number, which we assume to be constant 0.72.

In these equations, ρ is the fluid mass density, ρE is the total energy, ui is the component
of the velocity along each spatial direction, respectively. The quantity P is the pressure.

Under the assumption of the ideal gas, pressure P can be written as [45]:

P = ρRT (2.4)

CHAPTER 2. GOVERNING EQUATIONS 7

where R is the ideal gas constant which can be expressed as the difference between the heat
capacities at constant pressure CP and at constant volume CV . Denote e as the internal
energy of the fluid and γ as the adiabatic gas constant. Then based on the relations

T =
e

CV
=

1

CV
(E − 1

2
u2
k) and γ =

CP
CV

(2.5)

we can derive from Eq 2.4 that

P = (γ − 1)ρ

(
E − 1

2
u2
k

)
, (2.6)

Here, we assume γ to be the theoretical value of a diatomic ideal gas 1.4.
For simplicity, we will write Eq 2.1 in the following conservation form:

∂u

∂t
+∇ · F inv(u) = ∇ · F vis(u,∇u), (2.7)

where the solution vector u, inviscid flux F inv and viscous flux F vis are given by

u =

 ρ
ρui
ρE

 , F inv
j (u) =

 ρuj
ρuiuj + Pδij
uj(ρE + p)

 , F vis
j (u,∇u) =

 0
τij

τijui −Θj

 . (2.8)

If we zero out the viscous term (i.e. the right hand side of Eq 2.7), we obtain the Euler
equations, which we will use for some of the convergence tests.

In the numerical tests, some physical quantities are used for visualization. We define the
vorticity ω, entropy s and Mach number M as

ω = ∇× u, s =
P

ργ
and M =

√
ρ

γp
‖u‖2. (2.9)

2.2 Isentropic Flow

In some of our applications, we solve a simplified version of the compressible Navier-Stokes
equations instead of Eq 2.1 in order to reduce the computational cost. The version assumes
that the entropy s is constant throughout the simuation. That is, from Eq 2.9, we have the
relation

P = sργ. (2.10)

Since the pressure P can be evaluated without knowing the energy E according to Eq 2.10,
we can remove the energy equations from Eq 2.1 and only solve for flow density and velocities.
In this way, we reduce the size of the nonlinear system and thus have fewer degrees of freedom
to consider.

CHAPTER 2. GOVERNING EQUATIONS 8

Physically, this modification provides a good approximation for incompressible flow and
it can be seen as an artificial compressibility method. [19] suggests that under some assump-
tions, as the Mach number approaches zero, the solution of the isentropic flow will converge
to that of the incompressible Navier-Stokes equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇P + µ∆u (2.11)

∇ · u = 0 (2.12)

2.3 Boundary Conditions

In order to make the system of differential equations well-posed, we impose proper boundary
conditions on the domain boundary. From [11], we consider two different types in our
numerical tests.

First, when we simulate compressible flows around moving bodies, we use an adiabatic
viscous wall condition on the walls. This condition requires that at the boundary, the velocity
of the flow is exactly the same as that of the moving wall, i.e.

u = uwall. (2.13)

There is also no transfer of heat or mass between the wall and the fluid.
Second, in theory, many flow problems are defined on an infinite domain. However,

computationally, the meshes can only be generated for a finite area. For this reason, we
impose an artificial far-field ‘boundary condition’ on the outside mesh boundary so that we
can compute the flow as if there is no outside boundary. We choose the so-called free-stream
quantities by specifying density ρ∞, velocity u∞ and pressure P∞, and then set the solution
~u∞ on the boundary as

u =

 ρ∞
ρ∞u∞

P∞
γ−1

+ 1
2
ρ∞‖u∞‖2

 . (2.14)

Note that we also use this free-stream solution ρ∞, u∞ and P∞ as the initial condition in
most of our flow simulations.

9

Chapter 3

Moving-Mesh Strategy

For body-fitted methods, as the physical domain deforms, the mesh has to be moved ac-
cordingly. In order to maintain high element qualities throughout the geometric motion,
several local mesh operations are introduced to adjust the mesh. More specifically, denote
Ωt ⊂ Rd as the time-varying domain at time t and T ht as the triangulation of Ωt at time t
with characteristic mesh size h. At the very beginning, an initial triangulation T h0 of Ω0 is
generated using any standard unstructured mesh generation technique. For the next time
step ∆t, the triangulation T h∆t of Ω∆t is obtained by performing operations on the previous
triangulation T h0 . By repeating this process iteratively, we can generate a sequence of spatial
meshes {T h0 , T h∆t, T h2∆t, . . . , T hT } for all time steps. This chapter will talk about the details of
these mesh operations.

3.1 Mesh Node Smoothing

At each time step, as the first step of our moving-mesh technique, we move all the boundary
nodes rigidly according to the prescribed geometry motion. This approach is sufficient for
our examples, but in general it might be necessary to, for example, redistribute the boundary
nodes if the boundary deformations are large. The element qualities generally decrease after
the boundary nodes are moved, and thus it is important to smooth the interior mesh nodes
and then improve the mesh quality.

There are many approaches for mesh smoothing including spring-based methods [88],
radial basis functions [17] and PDE-based methods [72]. For our approach, we choose the
DistMesh scheme [60], which is believed to be one of the most efficient and robust approaches
for mesh node smoothing.

The DistMesh scheme belong to the category of spring-based methods. As illustrated in
figure 3.1, the movement of interior nodes is driven by repulsive forces along each attached
edge, which depend on the edge length l and a user-specified equilibrium length l0. It is

CHAPTER 3. MOVING-MESH STRATEGY 10

Figure 3.1: Force-based smoothing. The plot shows the net force exerted on one node.
(Image from [61])

calculated using the following equation:

|F (l, l0)| =

{
k(l0 − l) if l < l0,

0 if l ≥ l0,
(3.1)

where k is a constant (corresponding to the spring constant in Hooke’s law for a linear elastic
spring).

The equilibrium length l0 has to be set manually. For a uniform mesh, since the edge
lengths are roughly the same, it is often set as a constant using the root mean square of all
mesh edges:

l0 =

√
1

n

∑
l2i . (3.2)

But for more general adaptive meshes l0 has to be set individually for each edge, by a
specified mesh size function h(~x). Here we use the formula from [60], l0 for the jth edge can
be computed as:

l0,j = h(~xmid
j)

√ ∑
l2i

h(~xmid
i)

, (3.3)

where (~xmid
i) are the coordinates of the mid-point of the ith edge. Note that if we choose

h(~x) ≡ 1 for the uniform mesh, the expression of Eq 3.3 is consistent with Eq 3.2.
In addition, a scaling factor slightly greater than 1 is often applied to l0 for ensuring that

most edges are under compression [60].
Based on our force formulation, we construct an artificial ODE system:

dp

dt
= F (p) (3.4)

CHAPTER 3. MOVING-MESH STRATEGY 11

where p is the vector of node positions and F (p) is the sum of all forces from edges connected
to each node. By a simple forward Euler scheme, we update the node position iteratively by

p(n+1) = p(n) + δF (p(n)) (3.5)

where δ is an appropriate pseudo time step. The iterations are repeated until an approximate
force equilibrium is obtained (i.e. F (p) ≈ 0 for every interior node).

Note that unlike the standard linear Hooke’s law, Eq 3.1 zeroes out the attractive force
when the edge length is larger than the equilibrium length, which is also a critical point
to distinguish between the DistMesh approach and the popular Laplacian smoothing [25].
If we model the edge to behave like a regular spring according to Hooke’s law, then the
smoothing technique will move the node to the average position of all its neighbor nodes.
On the contrary, without the attractive forces, DistMesh may move the nodes in a direction
opposite to the average position. The main advantage of DistMesh is that we can have a
mesh with better element qualities if we are allowed to change the mesh connectivity by some
retriangulation algorithms (e.g. Delaunay triangulation [70]). Since we will change mesh
connectivity frequently during the geometry motion with large deformations, the DistMesh
approach is therefore preferred in our work.

Finally, it is straightforward to see that we can use the same force-based smoothing
technique to update the positions of interior nodes when extending our moving mesh strategy
to tetrahedral meshes in 3D.

3.2 Local Mesh Topology Change

When the time-dependent domain undergoes large deformations, node movements are usually
not sufficient to obtain high-quality elements and avoid element inversion. For our mesh-
moving strategy, however, we can perform local connectivity changes to improve the mesh
qualities [2]. In the following, for each simplex element K of a triangulation T ht ∈ Rd, the
mesh quality Q(K) is defined by the measure proposed by Field [26]

Q(K) = d!(d)
d
2 (d+ 1)

d−1
2

Vol(K)

(
∑ d(d+1)

2
i=1 li(K)2)d/2

(3.6)

where Vol(K) is the volume of K and li is the length of each edge i = 1, . . . , d(d+1)
2

.
For a triangular mesh in 2D, this can be done using edge swapping operations [43] as

shown in figure 3.2. Each time we consider a pair of adjacent triangles where usually at least
one of them has an unsatisfactory element quality. We can then flip their shared edge and
produce two new triangles sharing the new edge. If the minimum of the element qualities
increases, we know that edge swapping does help improving the mesh and thus we accept this
connectivity change. Note that during the process described, the number of nodes, edges
and elements remain unchanged (we discuss density control for adding or removing mesh

CHAPTER 3. MOVING-MESH STRATEGY 12

Figure 3.2: Local topology change in 2D.(Image from [61])

Operation I Operation II

Operation III Operation IV

Figure 3.3: Change of local element connectivity in 3D. The numbers of old and new elements
are shown above the arrows.

nodes below). Also, all elements have the same edge connections from T ht to T ht+∆t except
for the ones involved in the edge swapping.

In the 3D case, we can change the mesh topology by the similar idea. However, the
corresponding local connectivity changes need substantially more complicated operations in
order to address element distortion in 3D. As shown in Fig. 3.3, we use 4 local connectivity
change operations to improve the tetrahedra quality.

As the first operation, we consider a pair of tetrahedra sharing a common surface. These
can be transformed into three new tetrahedra by removing the shared surface and introducing
a new interior edge. The second one is the inverse operation to the first one, where we take
three tetrahedra sharing a common edge and transform them into two tetrahedra sharing a
common surface.

We use two more operations to deal with several tetrahedra at a time. When 4 tetrahedra
share a common edge, then by removing that edge we can obtain a pair of adjacent pyramids.

CHAPTER 3. MOVING-MESH STRATEGY 13

To turn them into tetrahedra, we only have to assign a diagonal to their shared quadrilateral
face. Similarly, for the case with 5 tetrahedra, the removal of common edge will give two
polyhedra with a common pentagon. Two diagonals are then needed to triangulate the
pentagon and hence triangulate the two polyhedra.

Based on our results, the operations above are sufficient to make the 3D mesh movement
robust and keep the tetrahedra well-shaped. In principle, to make the mesh-moving strategy
even more robust, we can follow the idea above and extend it to more cases [2]. Generally
speaking, for any N tetrahedra with a shared edge, we can always transform them into
2(N−2) new tetrahedra by removing the common edge and triangulating the central polygon
common face.

Comparing with regular remeshing or retriangulation algorithms, it turns out to be more
efficient to use all the operations mentioned in this section. More importantly, when these
operations are used, the connectivity change is local and limited to a small group of elements.
This locality property builds the critical basis of our work and provides us the opportunity
to simplify the space-time mesh generation as well as the solution transfer in the ALE
framework, which will be discussed in details in chapter 4 and 5, respectively.

Note that in 3D, the number of mesh nodes remains the same before and after the mesh
topology change but the number of elements and the edges might change during the process.
This means the element sizes might change accordingly. Furthermore, for both 2D and
3D cases, there are also scenarios where we need to deliberately change the element sizes
throughout the mesh motion. Next we will introduce our approaches to address this using
so-called mesh adaptivity, using a similar locality property as above.

3.3 Mesh Adaptivity

In many applications with large domain deformations, a dynamically changing mesh size
functions is needed as the mesh changes. Shock capturing problems are good examples [6],
where in order to track the shock, we have to locally refine the mesh around the shock to
better resolve the discontinuity and coarsen the mesh away from the shock to reduce the
computational cost. Therefore, we can see that the mesh density control is an indispens-
able component for a mesh adjustment strategy. To incorporate this into our mesh-moving
strategy, we present some additional local mesh operations in both 2D and 3D, in order to
locally increase or decrease the number of elements when mesh density control is needed.

In 2D, as shown in figure 3.4, we split elements in two ways: First, this can be done
within a single triangle, which is split into three smaller ones by adding an extra interior
node connected to the other vertices; second, we can use the technique of edge splitting
from [62], where the mesh is locally refined by adding the middle point of an edge and then
splitting the two adjacent elements into four smaller ones. On the other hand, if a coarser
mesh is needed, we consider two inverse cases to our refinement strategy: first, if a node
is shared by three elements, we simply remove it and substitute by a new larger element;
second, as an edge collapsing approach, if a node is shared by four elements, we remove it

CHAPTER 3. MOVING-MESH STRATEGY 14

Figure 3.4: Density Control Operations in 2D. These operations are used to control the local
mesh density by adding or removing nodes.

and locally re-triangulate the resulting quadrilateral into two triangular elements. Besides
coarsening of the mesh, edge collapsing can also be used to improve the mesh quality by
removing thin elements with big obtuse angles.

Again, although the 4 operations above turn out to perform well in our numerical test,
in general, we can always involve more density control operations with respect to a bigger
group of triangles (e.g. 5 or 6 triangles sharing a common vertex, which we can remove
and retriangulate the outside pentagon or hexagon). Moreover, note that we locally adjust
the mesh density by operating on triangles and quadrilaterals, which is consistent with the
elements with or without edge swapping from section 3.2, respectively. For our space-time
mesh generation which will be introduced in chapter 4, this is a an important premise in
order to unify the local triangulation analysis for elements involved in edge swapping and in
density changes.

Figure 3.5: Density Control Operations in 3D. These operations are used to control the local
mesh density by adding or removing nodes.

CHAPTER 3. MOVING-MESH STRATEGY 15

Similarly, we propose the density control operations associated with our local connectivity
change operations in 3D. Again, as shown in figure 3.5, consider the cases when multiple
tetrahedra share a common edge. By the idea of edge splitting, we can pick up the middle
point of this common edge and connect all the other vertices to it. In this way, we can split
N tetrahedra and obtain 2N new elements with smaller volume. We choose N = 3, 4, 5,
consistent with our 3D topology change operations. Inversely, we recover the original coarse
mesh by removing the middle point and the added edges.

3.4 The algorithm

Based on the operations in section 3.1, 3.2 and 3.3, we present the complete algorithm for
our moving-mesh strategy in algorithm 3.1.

Algorithm 3.1 Moving-Mesh Startegy

Require: Triangulation T h0 on Ω0

Require: Time step ∆t, time-dependent mesh size function h(~x, t), number of sweeps for
node smoothing N , pseudo time-step δ and mesh quality threshold ξ

Ensure: Triangulation T hti for each time step ti until time T
Set ti = 0
while 0 ≤ ti < T do

Move the boundary nodes rigidly according to geometry motion.
Set p(0) as the current position of each interior node.
for i from 0 to N-1 do

Compute the net force F (p(i)) for each p(i).
Update node position by p(i+1) = p(i) + δF (p(i))

end for
Set p(N) as the current position of each interior node.
while some element sizes are inconsistent with the ratio implied by h(~x, t) do

Change the mesh adaptivity using operations in section 3.3.
end while
while min quality of element K ∈ T hti < ξ do

Change the local mesh connectivity with operation from section 3.2
end while
Update ti = ti + ∆t

end while

At each time step, first the spring-based node smoothing will improve the mesh quality
by moving the nodes and changing the edge lengths. In practice, the absolute equilibrium
state does not have to be reached and we usually smooth the nodes with a fixed number of
sweeps (i.e. the input N in algorithm 3.1). The pseudo time-step δ is often chosen smaller
than ∆t, such that the typical value of number of sweeps N is about 10-20 per ∆t.

CHAPTER 3. MOVING-MESH STRATEGY 16

Next, given a time-dependent mesh size function h(~x, t), we change the mesh density if
needed. When applying our local density control operations, we employ a greedy approach
and start changing local density of the elements whose size ratio compared to the desired
value h(~x, t) is the largest. We attempt the local density control operations using the op-
erations with the most elements involved. For example, in 2D, the edge splitting approach
has the higher priority. When all the neighbors of a triangle have their desired element size,
the single splitting approach will be applied. Since we know that the greedy algorithm often
finds a sub-optimal solution, our method can adjust the density for most regions but may
not guarantee that every element satisfies the requirement from h(~x, t). On the other hand,
some new elements may not have sufficiently good quality after the mesh refinement espe-
cially for the single element splitting. For those concerns, the operations from section 3.2 are
implemented at the end of each loop to locally change mesh topology and further enhance
the element quality. Similar to the density control stage, we use a greedy algorithm and
start to change the mesh connectivity for the elements with worst quality.

Note that a while loop is used for both the density control and the connectivity update
parts, indicating that we are able to carry out the greedy algorithm for multiple sweeps.
We require that during each sweep, each element can be involved in at most one operation
to reinforce the locality property. This requirement plays a vital role when doing local L2

projections in the ALE framework in chapter 5. For space-time methods, during each time
step, we only allow either one sweep of density control or connectivity update in order to
generate the space-time meshes. In chapter 4, we will discuss ways to make this requirement
less restrictive.

Using the algorithm above, we can retain the mesh topology for all elements except for
the ones involved in the local operations. In the next chapters, we will talk about how to
take advantage of these properties and propose efficient methods based on them.

17

Chapter 4

Space-Time Discontinuous Galerkin
Methods

Discretization methods based on the so-called space-time framework unify the spatial and
the temporal dimensions, and solve the resulting system of equations without a separate
time integrator. In this chapter, we present a space-time discontinuous Galerkin method.
It consists of two major parts: first we give the complete numerical scheme including the
discretization and the solver, next we describe our space-time mesh generator based on the
spatial meshes created using the techniques in chapter 3.

4.1 Space-Time Formulation

Recall that we introduced the conservation form of the compressible Navier-Stokes equations
in Eq 2.1. Here we use the general expression from Eq 2.7:

∂u

∂t
+∇ · F inv(u) = ∇ · F vis(u,∇u), (4.1)

Consider these equations on a time-varying domain in Rn between time t = 0 to t = T for
some fixed final time T > 0. Let x = (x1, x2, . . . , xd) be the spatial variables. Again, we
denote Ωt ⊂ Rd as this domain at time t and when t1 < t2, we define the corresponding
space-time domain Ω[t1, t2] = {(x, t) | t1 ≤ t ≤ t2, x ∈ Ωt}. Next, by treating the temporal
dimension as an additional ’spatial‘ dimension. we transform Eq 4.1 from the d-dimensional
spatial domain Ωt between times t = 0 and t = T , into our space-time formulation of
equations in the d + 1-dimensional space-time domain Ω[0, T]. We introduce a new space-
time gradient operator ∇st = (∂x1 , ∂x2 , . . . , ∂xd , ∂t) and rewrite the Navier-Stokes equations
in Ω[0, T] as

∇st · F̃ inv(u) = ∇ · F vis(u,∇u), (4.2)

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 18

where the new inviscid space-time fluxes F̃ inv(u) have d+ 1 components. By attaching the
vector solution u to the end of the regular fluxes F̃ inv(u), it can be expressed as

F̃ inv(u) = (F̃ inv
1 (u), F̃ inv

2 (u), . . . , F̃ inv
d+1(u)) = (F inv(u),u) (4.3)

Note that since there are no temporal derivatives involved in the viscous fluxes, we retain
the same term F vis(u,∇u) on the right hand side of Eq 4.2.

Finally, the boundary conditions on ∂Ω[0, T] for Eqs 4.2 are the same as the boundary
conditions given for the original Eqs 4.1 (we refer the details to section 2.3). The boundary
conditions on the bottom face Ω0 correspond to the given initial conditions of Eqs 4.1.
On the top boundary ΩT of Ω[0, T], no boundary conditions are needed for the space-time
formulation, since the temporal derivative is treated as a simple linear convection term and
the corresponding characteristics move in the positive direction along the temporal direction.

4.2 Numerical Scheme

4.2.1 Discretization of the Euler Equations

First, we describe the nodal discontinuous Galerkin discretization for the inviscid part. Con-
sider the first-order space-time formulation of the Euler equations,

∇st · F̃ inv(u) = 0. (4.4)

We introduce a conforming triangulation T h[0,T] = {K} of the d-dimensional space-time do-

main Ω[0, T] into tetrahedral elements K. On T h[0,T], we define the broken space Vh[0,T] as the
space of functions whose restriction to each element K are polynomial functions of degree
at most p ≥ 1 [31]:

Vh[0,T] = {v ∈ [L2(Ω[0, T])]d+2 | v|K ∈ [Pp(K)]d+2 ∀K ∈ T h[0,T]}, (4.5)

where Pp(K) denotes the space of polynomials of degree at most p ≥ 1 on K.
The nodal DG method follows the standard finite element approach and chooses a set

of Np =
(
p+d
d

)
equidistributed nodes {x1,x2, . . . ,xNp} within each element K in the d-

dimensional space (p is again the polynomial degrees). Unlike the continuous Galerkin for-
mulation, the solution is locally represented by a linear combination of Np shape functions
{φh1 , φh2 , . . . , φhNp} within each element K, where each φhi is defined as the Lagrange interpo-

lation functions with respect to each xi (i.e. φhi ∈ Pp(K) and φhi (xj) = δij). Therefore, as
shown in figure 4.1, we can see that along each interior face, the nodes are duplicated be-
tween neighboring elements. This locality property creates discontinuities between solutions
from different elements, which provides an opportunity to define numerical fluxes similar to
the finite volume method in order to stabilize the solution[44].

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 19

Figure 4.1: An example for node distribution of DG method. Here, p = 2 and 6 nodes are
chosen within each element K. (Image from [61])

Accordingly, for each K ∈ T h[0,T], the solution uh ∈ Vh[0,T] can be written as

uh =

Np∑
k=1

ukφ
h
k(x) (4.6)

where uk ∈ Rd+2 is a coefficient vector which we are solving for. Based on this expression,
our DG formulation for Eq 4.4 then becomes: find uh ∈ Vh[0,T] such that∫

K

(
∇st · F̃ inv(uh)

)
· vh dx = −

∫
K

F̃ inv(uh) : ∇stv
h dx+

∮
∂K

(˜̂F inv · n) · vh ds

= 0, ∀vh ∈ Vh[0,T]. (4.7)

Here, vh are test functions and n ∈ Rd+1 is the outward unit normal to the boundary ∂K
of the space-time tetrahedron K.

We define the spatial part of the normal vector as ns and the temporal part as nt, and
similarly define the spatial part of the flux term as F̃ inv

s and the temporal part as F̃ inv
t . If

we normalize the spatial and the temporal components of the normal vector, respectively, as
ñs = ns/|ns| and ñt = nt/|nt|, we can decompose the numerical flux into two parts as

˜̂F inv · n = |ns|
[

˜̂F inv
s · ñs

]
+ |nt|

[
̂̃F inv
t ñt

]
= |ns|F s + |nt|F t. (4.8)

The numerical flux ˜̂F inv · n is an approximation to F̃ inv ·n on the face of element K, which
is specified in terms of uh on the two sides of the element boundary and by the boundary
conditions.

For the first term of ˜̂F inv · n, we define the spatial numerical flux F s as the standard
approximate Riemann solver proposed by Roe [68]. Roe’s method linearizes the nonlinear

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 20

fluxes F̃ inv
s (u) · ñs by introducing Roe’s matrices. More precisely, we denote u+ as the

solution exterior to element K and the u− as that interior to K. Then the flux can be
approximated by:

F̃ inv
s (u) · ñs ≈ Ãu (4.9)

where Ã = Ã(u+,u−) are Roe’s matrices constructed by a linear parameterization of u and
F̃ inv
s , which satisfy:

• Ã is diagonalizable with real eigenvalues

• When u+ → u and u− → u, Ã converges to the exact Jacobian matrix ∂(F̃ inv
s (u)·ñs)
∂u

• For any u+, u−, Ã(u+ − u−) = (F̃ inv
s (u+)− F̃ inv

s (u−)) · ñs

Then by a standard Riemann solver approach, F s can be computed as

F s = {F̃ inv
s · ñs} −

1

2
|Ã|[u⊗ ñs] (4.10)

with the eigen-decomposition Ã = RΛR−1, |Ã| is defined as R|Λ|R−1. {·} and [·] are the
arithmetic mean and difference between interior (terms with ’minus‘ sign) and exterior (terms
with ’plus‘ sign) quantities along the element interface. Their definitions are as follows:

{v} = (v+ + v−)/2 [v] = v+ ⊗ n+ + v− ⊗ n− ∀v ∈ Rm

{v} = (v+ + v−)/2, [v] = v+ · n+ + v− · n− ∀v ∈ Rm×d (4.11)

where m is the number of componenets and d is the dimension. For more details, we refer
to [68].

For the second term on the right hand side of Eq 4.8, we define the temporal numerical
flux F t by the standard upwinded flux of the corresponding linear time-derivative term ut
in Eq 4.4:

F t =

{
u+ñt if ñt > 0,

u−ñt otherwise.
(4.12)

Note that on the boundaries Ω0 and ΩT , the boundary conditions are indirectly incorporated
by the temporal numerical fluxes F t. In particular, since these are defined by upwinding,
the initial conditions of equations (2.1) are used on Ω0 and the interior solutions on ΩT .
This property makes it possible to advance the solution for a single interval ∆t at a time,
without connecting the entire space-time solution domain. In this sense, the space-time DG
formulation is similar to a standard implicit method-of-lines formulation using a one-step
time integrator.

The discretization above results in a final non-linear algebraic system of equations without
any explicit time dependencies. Note that unlike method-of-lines discretizations, the time
discretization is part of the DG formulation and thus it does not allow for choosing other
methods, such as multistep or explicit time integrators. We will discuss numerical solvers
for Eq 4.26 in section 4.2.3.

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 21

4.2.2 Discretization of the Viscosity Terms

Next we describe the discretization of the viscous terms in the compressible Navier-Stokes
equations. We apply a standard procedure for second-order terms [4], where the system (4.2)
is split into a first-order system of equations by introducing new unknown variables q:

∇st · F̃ inv(u) = ∇ · F vis(u, q), (4.13)

∇u = q. (4.14)

This system is again discretized using a standard DG procedure. First, we introduce an
additional broken space Σh

[0,T] for the approximation qh as

Σh
[0,T] = {σ ∈ [L2(Ω[0, T])](d+2)×d | σ|K ∈ [Pp(K)](d+2)×d ∀K ∈ T h[0,T]}, (4.15)

and qh also follows the Galerkin expression as Eq 4.6

qh =

Np∑
k=1

qkφ
h
k(x) (4.16)

where qk ∈ R(d+2)×d is a coefficient matrix which we are solving for.
Then the DG formulation for equations (4.13) and (4.14) becomes: find uh ∈ Vh[0,T] and

qh ∈ Σh
[0,T] such that for each K ∈ T h[0,T], we have

−
∫
K

F̃ inv(uh) : ∇stv
h dx+

∮
∂K

(˜̂F inv · n) · vh ds

= −
∫
K

F vis(uh, qh) : ∇vh dx+

∮
∂K

(̂F vis · ns) · vh ds, ∀vh ∈ Vh[0,T] (4.17)∫
K

qh : σh dx = −
∫
K

uh · (∇ · σh) dx+

∮
∂K

(ûh ⊗ ns) · σh ds, ∀σh ∈ Σh
[0,T]. (4.18)

Recall that ns is the spatial component of the outward unit normal n at the boundary ∂K.

In Eqs 4.17 and 4.18, the inviscid part ˜̂F inv · n is approximated using the same procedures

as previously described in section 4.2.1. On the other hand, the viscous fluxes ̂F vis · ns and

ûh are approximations to F vis · ns and u on the boundary of element K. For the viscous
numerical flux, we first perform a similar normalization:

̂F vis · ns = |ns| ̂F vis · ñs. (4.19)

Note that since the viscous terms in Eqs 4.13 as well as all of the equations 4.14 only involve

derivatives with respect to the spatial variables, we can approximate ̂F vis · ñs and ûh using
schemes for spatial discretizations without modifications.

There are many approaches designed for discretizing the second order terms in the com-
pressible Navier-Stokes Equations and a survey of various methods can be found in [10].

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 22

Some direct discretization techniques include the symmetric interior penalty method (IP)
[22], the BR2 method [7], and the local discontinuous Galerkin (LDG) scheme [13]. Here,
we choose the numerical fluxes according to the Compact Discontinuous Galerkin (CDG)
method [54], which is a modified version of the LDG method with a more compact sparsity
pattern and better stability properties.

Using the notation from Eq 4.11, the CDG method defines ̂F vis · ñs = F̂ vis · ñs and ûh

in the form of

F̂ vis = {F vis}+ C11[u] + [F vis]⊗C12 (4.20)

ûh = {uh} −C12 · [uh] + C22[F vis] (4.21)

where the coefficients C11 and C22 are scalar and C12 is a vector in the direction of the normal
vector. Different choices of these coefficients induce different schemes. The CDG method
relies on a set of switch functions on each internal face of the elements. More precisely,
assume element K1 and element K2 share a common face. Then on the side of K1, we define
a switch function SK1,K2 and SK2,K1 on the side of K2 (i.e. each face has two switch functions
for two sides). Each switch function has two possible values chosen from the set {−1, 1} and
satisfies the condition:

SK2,K1 + SK1,K2 = 0 (4.22)

There are various ways to assign the values of these switch functions. A simple approach
is the natural switch, where we globally index all the element, and assign SK1,K2 = 1 if the
index of K1 is greater than that of K2 and SK1,K2 = −1 otherwise.

Consider an element K1 with a neighbor K2. Based on the value of switch functions, the
coefficient C12 of K1 associated with the shared face is determined by

C12 =
1

2
(SK1,K2ñ+

s + SK2,K1ñ−s) (4.23)

Then the numerical fluxes in Eqs 4.20 and 4.21 are as follows:

F̂ vis = C11[u] +

{
F vis(u+, q+), if SK1,K2 = 1,

F vis(u−, q−), if SK1,K2 = −1,
(4.24)

ûh = C22[F vis] +

{
u−, if SK1,K2 = 1,

u+, if SK1,K2 = −1.
(4.25)

Through Eqs 4.24 and 4.25, we can see that numerical fluxes from the CDG method have
an upwinding/downwinding character related to the value of the switch functions. Besides,
the first term on the right hand side of each equation can be regarded as a penalty terms
for additional stability. In our implementation, we usually set the constants C11 and C22 to
zero. Note that by this setting, the dependence of q is eliminated from Eq 4.25 which means
all the auxiliary q variables can be eliminated from the system using local operations.

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 23

Eqs 4.17 and 4.18 define a non-linear discrete system for u and q, and after elimination
of q the final system only involves u. Next, we will describe our numerical solver for this
non-linear system.

4.2.3 Newton-Krylov Solver

As described in sections 4.2.1 and 4.2.1, the DG discretization for the space-time formulation
finally results in a time-independent nonlinear system of the form

R(uh) = 0. (4.26)

To solve this system, we use Newton’s method and the efficient parallel block-ILU(0) pre-
conditioned restarted GMRES method proposed in [58]. Newton’s method is a standard
choice for solving non-linear algebraic system. For this particular problem, denote uh(k) as
the approximation solution after k iterations. At each iteration, we compute the correction
term δu and update our solution by the following scheme

Jδu = R(uh(k)), (4.27)

uh(k+1) = uh(k) − δu (4.28)

where J is the Jacobian matrix dR
du

.
Due to the large size of the linear system 4.27 and the relatively dense structure of

the Jacobian matrices, it is quite difficult to invert the Jacobian matrix using direct sparse
factorizations. Instead, there are various Krylov subspace methods to iteratively solver
for the solution such as the quasi-minimal residual method (QMR), the conjugate gradient
squared method (CGS) and the generalized minimal residual method (GMRES). A detailed
discussion about Krylov method can be found in [18]. In our work, we choose GMRES for
Eq 4.27.

In addition, it is well known that the performance of GMRES can be significantly im-
proved by an appropriate preconditioner. Note that the CDG method has a compact property
such that for each element K, Eqs 4.17 and 4.18 only involve the degrees of freedom in K
and its neighboring elements. This gives J a block-wise structure, where each row of J
corresponding to a node in K only has non-zero entries in the blocks corresponding to K
and its neighbors. Based on this special structure of the Jacobian matrices, we can use a
block-ILU(0) preconditioner with our GMRES solver. In short, this preconditioner computes
an incomplete LU factorization for the Jacobian matrix J by applying standard Gaussian
elimination on each non-zero block, and ensures that no non-zero entry can be added outside
the sparsity pattern of J .

Finally, since high-order discretizations always introduce large-scale computation and
storage costs, it is necessary to implement our numerical solver in parallel to improve the
performance. Here we refer to [56] for the details of our partitioning strategy.

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 24

4.3 Space-Time Mesh Generation for 2D Problems

From the description of the DG discretization above, we can see that when we solve moving
domain problems with large deformations, one key benefits of the space-time framework is
that it does not require any explicit time integration procedure. For the traditional method-
of-lines approach, the time integration must be computed along the time characteristics,
which cannot be directly used when the spatial mesh topology changes. Instead, the space-
time framework depends on a unified space-time mesh and thus has an unstructured mesh
pattern also in the temporal dimension. This property provides much more flexibility to
deal with large deformation problems. In this section, we present our novel algorithm for
space-time mesh generation for 2D problems.

For 2D problems, the space-time mesh needs to be created in 3D. Most of the previous lit-
erature use commercial 3D tetrahedral mesh generators with constraints on the surface mesh
(i.e. the surface mesh must be consistent with the spatial meshes). However, this approach
may introduce more elements than necessary, which will significantly increase the computa-
tional costs for our fully implicit numerical solver. Instead, our approach is closely related
to the moving-mesh techniques in section 3. We try to take advantage of the relationship
among our spatial meshes and design a more efficient mesh generator.

4.3.1 Basic Idea

Given a timestep ∆t, in order to reduce the computational cost, we generate tetrahedral
space-time meshes for each slab Ω[t, t + ∆t] separately (see figure 4.2). Since our moving-
mesh algorithm is entirely based on local mesh modifications, the space-time mesh can be
both efficiently and robustly generated directly from these operations.

More specifically, given an unstructured mesh of Ωt ∈ R2 at time t, we first generate
an unstructured mesh of Ωt+∆t as the time-dependent flow domain is deforming, using our
moving-mesh techniques. Based on the resulting two layers of triangular meshes, we apply
an efficient combinatorial tetrahedral triangulation method to generate the space-time mesh
of Ω[t, t + ∆t]. We then solve the compressible Navier-Stokes equations in this space-time
mesh using the DG scheme described in the previous section, and repeat the procedure for
the next space-time slab Ω[t + ∆t, t+ 2∆t], etc. The domains Ωt are never re-meshed from
scratch, instead only one initial mesh generation for Ω0 is needed, which is then improved
at each subsequent time step. More importantly, all the mesh improvement techniques are
performed on the 2D spatial mesh, and the tetrahedral triangulation is entirely based on
local combinatorial connections.

Recall that our spatial mesh generator is based on the DistMesh algorithm [60], which
iteratively improves a triangular mesh using only node movements, element connectivity
updates and density control. As we mentioned in section 3.4, to simplify the space-time
tetrahedral triangulation algorithm, we require that each element is only involved in at most
one sweep of density control or connectivity change during each time step. This means that
in 2D, all the elements involving topology changes come in groups. This simplification does

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 25

Figure 4.2: Space-Time Mesh Generation. The left figure illustrates two mesh layers at time
t and t + ∆t, and the right figure shows a corresponding 3D space-time mesh between the
two layers. The blue faces show a cross-section of the tetrahedral mesh.

Figure 4.3: Tetrahedral Triangulation in 2D. The left plot illustrates a valid triangulation for
an element without edge flips, and the right plot shows a triangulation for a pair of elements
with a flipped edge.

not appear to impose a severe limitation in any of our numerical tests, which include highly
complex domain motions and deformations. In principle it is possible that multiple sweeps
may be required to obtain high element qualities, in which case we simply reduce the time
step. Another effective way to further alleviate this limitation is to restrict the mesh topology
changes to certain regions of the domain and keep other parts of the mesh either fixed or
rigidly following the boundary motion. By performing local mesh adaptation only on the
regions which allow for mesh topology changes, we obtain a sufficient number of groups of
elements and the local operations are able to generate meshes with high quality.

The next step is to efficiently generate a space-time mesh Ω[t, t+ ∆t] for each time step
based on the initial mesh of the spatial domain Ωt and the deformed and improved mesh of
Ωt+∆t. We begin with considering the case without density control operations. Recall that
our 2D mesh moving and edge flipping algorithm is able to keep the same number of nodes
on Ωt+∆t as that of Ωt, so we can simply connect each node of Ωt with its corresponding node
of Ωt+∆t, as the first step of our space-time mesh generation. This point-wise connection will
ensure that the space-time mesh respects the moving boundary, due to the rigid motion of
boundary nodes from Ωt to Ωt+∆t.

First, consider an element of Ωt without edge flipping (figure 4.3, left). This element can
be extruded to Ωt+∆t and form an irregular triangular prism, where ‘irregular’ means that the

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 26

edge on the bottom face is not necessarily parallel to its corresponding edge on the top face
(due to different node displacements during the force-based smoothing procedure). Next, for
elements involved in an edge flip during the interval [t, t+∆t], each can be extruded together
with the paired element it flipped an edge with, which locally forms a quadrangular prism
with two reverse diagonals on the top and the bottom faces (figure 4.3, right). Again, similar
to the unflipped case, the edges at Ωt are not necessarily parallel to those at Ωt+∆t. However,
for convenience in our notation, we will still refer to these vertically skew quadrilaterals as
‘lateral faces’ of the prisms. Finally, it is clear that the amount of node displacement during
a time step must be limited to ensure sufficiently high element qualities. We control this
dynamically by adjusting the size of the time step ∆t and the pseudo time step δ in section 3.1
in order to avoid inverted prisms.

Similarly, we can generalize this prism formulation to our density control operations.
Again for 2D, these operations do not change any mesh connectivities except for the group
of elements involved in the operation. Locally, in the setting of the space-time framework,
these elements can also be extruded together along the temporal dimension. When adding
or removing a node within a single element, it forms a triangular prism with three interior
edges on its top or bottom face; for edge splitting and edge collapsing on a pair of triangles,
a quadrangular prism is again created with a few interior edges on both the top and the
bottom faces. So in summary, the point-wise connection strategy described above produces
a mesh of triangular and quadrangular prisms based on our moving-mesh algorithm.

Note that if there is no mesh connectivity or mesh density change, we can simply solve
the problem using triangular prisms, which is consistent with the idea looming behind the
method-of-lines. But for large deformations, we cannot only use the space-time mesh con-
sisting of triangular and quadrangular prisms. For element involved in edge flipping, on the
top and the bottom faces of each quadrangular prism, the solution is not represented by a
Galerkin expansion (see Eq 4.6) in a quadrilateral, but different polynomial spaces within
two triangular elements. This means that quadrangular prisms must be triangulated in order
to match the diagonals on these faces (i.e. spatial mesh connectivity changes). The same
issue happens to the density control operations as well, since there must be some interior
edges splitting the bottom/top faces. Without inserting extra mesh nodes, next we consider
how to split these prisms into a conforming mesh of tetrahedra, by first describing how to
perform a valid local triangulation of each prism, and second how to globally ensure that
two adjacent prisms respect the same diagonal on their shared lateral face.

4.3.2 Local Triangulation of Prisms

Again, we will first study local triangulations without density control operations. Our goal
is to form prism triangulations entirely based on the nodes in the given spatial meshes.
First of all, we locally index the nodes of each prism in a counterclockwise order. As shown
in figure 4.4, for each prism V between Ωt and Ωt+∆t, if V a triangular prism, we locally
number the vertices on the bottom face as {pV,t1 , pV,t2 , pV,t3 } and the vertices on its top face as
{pV,t+∆t

1 , pV,t+∆t
2 , pV,t+∆t

3 }. Similarly, vertices of a quadrangular prism V on the bottom and

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 27

top faces are locally numbered as {pV,t1 , pV,t2 , pV,t3 , pV,t4 } and {pV,t+∆t
1 , pV,t+∆t

2 , pV,t+∆t
3 , pV,t+∆t

4 },
respectively. In addition, without loss of generality, we require that the original shared edge

on Ωt is the line segment pV,t2 pV,t4 and the new shared edge on Ωt+∆t is the line segment

pV,t+∆t
1 pV,t+∆t

3 .
We will denote by F V

i the lateral face with vertices at pV,ti , pV,t+∆t
i , pV,tj and pV,t+∆t

j ,
where j = (i mod n) + 1, n is the number of lateral faces of V , and 1 ≤ i ≤ n. For each
lateral face F V

i , there are two possible face diagonals which we define using a sign function
SVi (pV,ti , pV,t+∆t

i , pV,tj , pV,t+∆t
j) for each F V

i according to

SVi (pV,ti , pV,t+∆t
i , pV,tj , pV,t+∆t

j) =

{
−1 if the diagonal edge is pV,ti pV,t+∆t

j

+1 if the diagonal edge is pV,t+∆t
i pV,tj

(4.29)

for 1 ≤ i ≤ n.
Now, a triangulation of a triangular prism V is completely determined by the values

of its 3 sign functions SV1 , SV2 and SV3 . Combinatorially, it is easy to see that there are
23 = 8 different combinations, but only 6 of these give valid triangulations (illustrated in
figure 4.4, left). Note that the two uniform cases {SV1 = +1, SV2 = +1, SV3 = +1} and
{SV1 = −1, SV2 = −1, SV3 = −1} cannot be used for valid triangulations.

For the quadrangular case, we first make the following definition:

Definition 4.1. For a quadrangular prism V , we define the standard value of the sign
function SVi as +1 if i is odd and −1 if i is even.

Since a quadrangular prism V has 4 lateral faces, a triangulation is determined by the
values of the 4 corresponding sign functions SV1 , SV2 , SV3 and SV4 , for a total of 24 = 16
different combinations. However, in order allow for a valid triangulation of V , a combination
of sign functions must satisfy the following condition:

Condition 1. There are at least two consecutive sign functions SVi and SVmod(i,4)+1 which are
set to their standard values.

Geometrically, this condition means at least one of the 4 tetrahedra {pV,t1 , pV,t2 , pV,t4 , pV,t+∆t
1 },

{pV,t2 , pV,t3 , pV,t4 , pV,t+∆t
3 }, {pV,t2 , pV,t+∆t

1 , pV,t+∆t
2 , pV,t+∆t

3 } or {pV,t4 , pV,t+∆t
1 , pV,t+∆t

3 , pV,t+∆t
4 } must

be formed and included in the final triangulation. This results in a total of 9 possible com-
binations of SV1 , SV2 , SV3 and SV4 that correspond to valid triangulations of V (illustrated in
figure 4.4, right). The local triangulations are summarized in table 4.1.

Lastly, we consider the triangulation of the prisms corresponding to our density control
operations. First, no matter whether we add or remove a node within a single triangle, we
can locally extrude that triangle to form a triangular prism. Note that in the previous cases
(corresponding to the element without edge flipping or density change), if the combination
{SV1 , SV2 , SV3 } gives a valid triangulation, then both the top and the bottom surface must be-
come a surface of a tetrahedron. Comparing with these cases, the density control operation

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 28

Figure 4.4: All the valid triangulations of a triangular prism (left) and of a quadrangular
prism (right). The sets below each triangulation show the values of the corresponding sign
functions.

Summary for Triangular Prism
{SV1 , SV2 , SV3 } {+1,+1,+1} {+1,+1,−1} {+1,−1,+1} {+1,−1,−1}

Valid? No Yes Yes Yes
{SV1 , SV2 , SV3 } {−1,+1,+1} {−1,+1,−1} {−1,−1,+1} {−1,−1,−1}

Valid? Yes Yes Yes No
Summary for Quadrangular Prism

{SV1 , SV2 , SV3 , SV4 } {+1,+1,+1,+1} {+1,+1,+1,−1} {+1,+1,−1,+1} {+1,+1,−1,−1}
Valid? No Yes Yes Yes

{SV1 , SV2 , SV3 , SV4 } {+1,−1,+1,+1} {+1,−1,+1,−1} {+1,−1,−1,+1} {+1,−1,−1,−1}
Valid? Yes Yes Yes Yes

{SV1 , SV2 , SV3 , SV4 } {−1,+1,+1,+1} {−1,+1,+1,−1} {−1,+1,−1,+1} {−1,+1,−1,−1}
Valid? No Yes No No

{SV1 , SV2 , SV3 , SV4 } {−1,−1,+1,+1} {−1,−1,+1,−1} {−1,−1,−1,+1} {−1,−1,−1,−1}
Valid? No Yes No No

Table 4.1: The summary of sign function value combination for local triangulations.

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 29

in a single element only splits the top/bottom surface of the prism. So we can simply trian-
gulate the tetrahedron involving that top/bottom surface by connecting the added/removed
node to the tetrahedron vertex not on the top/bottom surface. In the left of figure 4.5, we
give an example of node removal in a single element.

On the other hand, the elements involved in the edge splitting or edge collapsing cases
form a quadrangular prism similar to the edge flipping cases. The difference is that on the
top/bottom surface, the former prisms have a diagonal but the current ones have 4 short
edges from each surface vertex connected to a central node, where without loss of generality
we can assume there are two diagonals crossing each other. Similar to the triangular case,
if the combination {SV1 , SV2 , SV3 , SV4 } gives a valid triangulation for a quadrangular prism
corresponding to the edge flipping operation, the two triangles sharing the diagonal edge on
the top/bottom surface must belong to 2 different tetrahedra. Now when we add another
diagonal to either surface, we can turn these 2 tetrahedra into 4 small ones by connecting
the central node to the tetrahedron vertices not on the top/bottom surface (as shown on the
right of figure 4.5).

In conclusion, we can see that the summary in table 4.1 is also suitable to the prisms
formed by the density control operations. Therefore, without loss of generality, we will
discuss the algorithm in the next section assuming that we move the mesh only using node
movement and edge flipping, in order to simplify the description.

Figure 4.5: Examples of triangulated prisms corresponding to local density control opera-
tions.

4.3.3 Diagonal Matching and the Global Algorithm

The last step is to obtain a global tetrahedral triangulation from the extruded prism elements
between Ωt to Ωt+∆t. This is nontrivial as the local triangulations are not independent,
because each prism should match the diagonals of shared lateral faces with their neighboring
prisms.

First of all, if we consider a space-time mesh only consisting of triangular prisms (i.e. only
involving density control in single elements), it is not difficult to match the diagonals based
on the analysis of section 4.3.2. An algorithm similar to the natural switch (the technique
we used in section 4.2.2 to assign the value of switch function for the CDG method) can
be directly applied to this problem (we will discuss the details in section 4.4.1). However,
due to the more complicated triangulation rules for quadrangular prisms, it turns out to

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 30

be more challenging to work out an algorithm covering all the possible cases. Here we
describe an efficient depth-first algorithm which finds a global triangulation that satisfies
these restrictions.

Note that for each interior lateral face, there are two sign functions belonging to elements
on each side. The algorithm will set the value of each sign function iteratively but set the
value of the two sign functions corresponding to the same lateral face simultaneously in order
to satisfy the condition of diagonal matching. Before describing the algorithm, we introduce
the following definitions:

Definition 4.2. For a prism V , let V ∗ be the adjacent prism of V with F V ∗
i∗ = F V

i for an
index i∗. We say F V

i is a wall if the values of SVi and SV
∗

i∗ are both set and SVi = SV
∗

i∗ . We
say F V

i is accessible if the values of SVi and SV
∗

i∗ are both unset.

During the algorithm, we will make the assumption that each prism V only has three
possible states as follows,

Triangular Prism at State 1. {F V
1 , F

V
2 , F

V
3 } are all accessible;

Triangular Prism at State 2. Exactly one of {F V
1 , F

V
2 , F

V
3 } has become a wall and the

other two are accessible;

Triangular Prism at State 3. {F V
1 , F

V
2 , F

V
3 } have all become walls and {SV1 , SV2 , SV3 } can

make a valid triangulation of V .

Quadrangular Prism at State 1. {F V
1 , F

V
2 , F

V
3 , F

V
4 } are all accessible;

Quadrangular Prism at State 2. Exactly one of the pair faces {F V
1 , F

V
3 } and {F V

2 , F
V
4 }

have both become walls, at least one of two corresponding SVi was set to its standard value,
and both F V

i in the other pair are accessible.

Quadrangular Prism at State 3. {F V
1 , F

V
2 , F

V
3 , F

V
4 } have all become walls and {SV1 , SV2 , SV3 , SV4 }

can make a valid triangulation of V .

With this assumption, we now introduce the algorithm by its three main operations.

Operation 1: Optimal Local Triangulation of Prisms
Based on the assumption, throughout the algorithm, if V has not been triangulated it must
be at state 1 or 2. We then choose an optimal local triangulation of V by

arg max
T V

min
K∈T V

Q(K) (4.30)

where T V denotes the set of all the possible valid triangulations of V , whose sign func-
tions respect the ones prescribed on the walls. Again, Q(K) represents the quality of each
tetrahedron K of T V , which is calculated by the measure proposed in Eq 3.6.

From the local triangulations in figure 4.4, it can easily be verified that T V is nonempty
when V is at state 1 or 2. In other words, we can always find a valid triangulation of V .

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 31

Operation 2: Sign Function Synchronization of Neighbor Prisms
When a prism V is triangulated by operation 1, in order to not violate the assumption made
at the beginning, we have to transfer V to state 3. Therefore, as operation 2, we start from
each accessible F V

i , and update the sign functions of the corresponding neighbor prisms to
make F V

i a wall. For instance, suppose F V
i was accessible before the local triangulation of

V , and V ∗ is the adjacent prism with F V ∗
i∗ = F V

i for some index i∗. Again, according to the
assumption, V ∗ must be in state 1 or 2 since F V ∗

i∗ was accessible before the triangulation of
V . So in total, there are 4 possible cases for V ∗:

Case 1. If V ∗ is triangular at state 1, we simply set SV
∗

i∗ = SVi , which makes F V
i and F V ∗

i∗

walls and transfers V ∗ to state 2;

Case 2. If V ∗ is quadrangular at state 1, we set SV
′

i∗ = SVi and SV
∗

mod(i∗+1,4)+1 to their standard
values. This transfers V ∗ into state 2. If V ∗∗ is the adjacent prism of V ∗ with shared face
F V ∗

mod(i∗+1,4)+1, then we continue to update sign functions of V ∗∗ recursively using operation
2;

Case 3. Suppose V ∗ is triangular at state 2 with a wall F V ∗
j∗ for some j∗ 6= i∗. We then use

operation 1 to triangulate V ∗ immediately under the restrictions imposed by the prescribed
values of SV

∗
j∗ and SV

∗
i∗ = SVi . Let k∗ be the third index other than i∗ and j∗ and V ∗∗ be the

adjacent prism of V ∗ with shared face F V ∗

k∗ . To transfer V ∗ to state 3, we have to continue
updating sign functions of V ∗∗ recursively using operation 2;

Case 4. Suppose V ∗ is quadrangular at state 2 with a pair of opposite walls, say, SV
∗

j∗ and
SV

∗

k∗ (where i∗ 6= j∗ and i∗ 6= k∗). Let l∗ be the fourth index other than i∗, j∗ and k∗. Again,
we use operation 1 to triangulate V ∗, under the restrictions imposed by the prescribed values
of SV

∗
j∗ and SV

∗

k∗ , as well as SV
∗

i∗ = SVi . In spite of having three restrictions, we claim that
the equation (4.30) is always solvable for V ∗. To prove this, we first note that either SV

∗
j∗ or

SV
∗

k∗ has been set to their standard values since V ∗ is at state 2. Therefore, as long as SV
′

l∗

is set to the standard value, the combination of sign functions must satisfy Condition 1 and
thus gives a valid local triangulation. Finally, similarly to the previous case, if V ∗∗ is the
adjacent prism of V ∗ with the shared face F V ∗

l∗ , we continue to update sign functions of V ∗∗

recursively using operation 2, in order to turn F V ∗

l∗ into a wall and thereby transfer V ∗ to
state 3.

Operation 3: Triangulation Adjustment of Root Prism
As shown in figure 4.6, if we triangulate a prism V by operation 1 and repeatedly encounter
the cases 2− 4 when synchronizing sign functions of neighbors by operation 2, then a path
will be made which we will refer to as an ‘updating path’. In fact, every updating path will
eventually end with one of three possibilities: 1. a prism belonging to Case 1 (figure 4.6,
right); 2. a domain boundary; 3. back to the root prism V from a face which is not yet a
wall (figure 4.6, left). The third case is the only potentially difficult one, since the last prism

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 32

Figure 4.6: Two examples of updating paths. Each triangle represents a triangular prism and
each quadrilateral represents a quadrangular prism. The yellow element is the root prism
V , the green elements are prisms at state either 1 or 2, and the red elements are already
triangulated, i.e., at state 3. The purple elements denote an updating path directed by the
black arrows. The corresponding case number that each purple element belongs to is also
shown. The example path on the left ends when it returns to V , and the example path on
the right ends with a triangular prism belonging to Case 1.

of an updating path is a neighbor of the root prism V , but they may have inconsistent values
of the sign functions corresponding to their shared face. Suppose the last prism is V ′ with
the shared face F V ′

i′ = F V
i but SV

′

i′ 6= SVi . Operation 3 is to change the value of SVi to that
of SV

′

i′ and thus make both F V ′

i′ and F V
i into walls.

It is clear from the local triangulations derived in Section 4.3.2 that changing values of
SVi might result in a new combination of sign functions the does not correspond to a valid
local triangulation of the root prism V . We will avoid this situation by arranging the order
by which new updating paths are launched.

First, we consider a triangular root prism V . If V was at state 1 before its triangulation,
at least two updating paths will be launched from V . If the first two updating paths are
launched from faces with different values of their sign functions, then there will always be a
valid triangulation of V regardless of whether any path will return to V or the value of the
third sign function will be changed. In fact, the condition above can always be satisfied if the
first updating path is launched from the face with a sign function value different from the
other two. Similarly, if V was at state 2 with a wall F V

i before its triangulation, operation 3
will not destroy the validity of the local triangulation provided that the first updating path
is launched from a face with sign function value different from SVi .

Next we consider the case that the root prism V is quadrangular. Recall that for a valid
triangulation of V to exist, it is required that there are two consecutive sign functions set
to their standard values. If V was at state 2 before its triangulation, it must have a wall,
say F V

i , whose sign function was set to the standard value. After triangulation by operation

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 33

Algorithm 4.1 Space-Time Mesh Generation with Path Marching

Require: A spatial mesh MESH1 of Ωt and MESH2 of Ωt+∆t

Ensure: A space-time mesh STMESH of Ω[t, t + ∆t]
Create prisms by extruding elements from MESH1 to MESH2 and make a list of prisms called PList
Initialize an empty list STMESH for storing the elements of the space-time mesh
while PList is non-empty do

Pop a prism V from PList
if V is not at state 3 then

Triangulate V by operation 1
Make a list of FV

i which has not been a wall, called FList
Sort FList by the order of launching updating paths discussed for operation 3
for FV

i in FList do
Find the neighbor prism NBPrism adjacent to V by FV

i . Initialization of an updating path
while NBPrism exists (not exist if encountering domain boundary) and is not V do

Synchronize sign functions of NBPrism by operation 2
if NBPrism belongs to Case 2-4 then

Update NBPrism by operation 2 and continue the updating path
else

Break . The updating path ends with a NBPrism of Case 1
end if

end while
if NBPrism is V then . The updating path back to the root prism

Adjust the values of sign functions of V by operation 3 if necessary
end if

end for
end if
Push all the elements from the resultant triangulation of V into STMESH

end while
return STMESH

1, there will be another face adjacent to F V
i , say F V

j , whose sign function is also set to
the standard value. When the first updating path from F V

j is launched, Condition 1 will
then not be violated even if operation 3 is applied. Finally, if V was in state 1, to respect
Condition 1 we have to launch the first two updating paths from faces with standard sign
function values. This can always be done, since no face of V is a wall and thus any one can
be changed to the standard value if necessary.

Based on the three operations described above, the full algorithm is summarized in al-
gorithm 5.1. The algorithm looks quite complicated since there are a number of different
situations to be considered and addressed. However, in practice the entire algorithm only de-
pends on combinatoric properties. Although there are a few conditional sentences to adjust
the values of the sign functions, most operations are assignments and there are no arith-
metic operations. Therefore, the algorithm is fairly efficient even with a large number of
quadrangular prisms (i.e. many edge flippings, splittings and collapsings).

Recall that we described the operations based on the assumption that throughout the
algorithm, each prism only has three possible states. In fact, initially all prisms faces are set
to state 1; and as the algorithm progresses, the operations in the algorithm can only change

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 34

a prism into state 2 or 3. Finally, the global tetrahedral triangulation is complete if and
only if all the prism faces have become walls. Therefore, by induction, it is clear that the
assumption holds for all prisms and that the algorithm will return a global triangulation of
the space-time domain Ω[t, t+ ∆t]. For more details of this space-time mesh generation for
2D in space, we refer to [84, 85].

4.4 Space-Time Mesh Generation for 3D Problems

For 3D problems, the space-time mesh has to be created in 4 dimensions (3D in space
plus 1D in time). Clearly the mesh generation becomes more challenging due to a number of
reasons: first of all, the spatial moving mesh strategy involves more possible local operations;
second, we lack a sufficient understanding of the geometric structures for simplex meshes in
4D; finally, visualization seems almost impossible for mesh quality validation. Nevertheless,
from 3D to 4D, we notice that many combinatoric properties of simplices remain the same,
which inspires us to think of an algorithm in 3D first by purely combinatoric analysis, and
then generalize it to 4D. Here we present our algorithm for 4D space-time mesh generation
and prove its validity.

4.4.1 An Alternative Algorithm for 2D Problems

Recall that we try to minimize the number of mesh nodes and elements when generating the
space-time meshes, in order to reduce the computational cost of solving implicit systems.
Algorithm 5.1 in section 4.3 is able to create meshes without inserting any other nodes other
than those on the spatial meshes, however, the path-marching technique seems quite difficult
to generalize to higher dimensions. For this reason, here we propose an alternative algorithm
by relaxing our requirement and allowing a few nodes to be added between two consecutive
spatial meshes.

At the beginning of section 4.3.3, we briefly described an idea that if there are no quad-
rangular prisms, we can simply index the mesh nodes and for each lateral face, choose the
diagonal connecting the node with the smaller index on the bottom spatial mesh, to that
with larger index on the top spatial mesh. More precisely, using the same notation as in
section 4.3.3, we propose an indexing approach that globally indexes all the mesh nodes and

for each lateral face, chooses the diagonal pV,ti pV,t+∆t
j whenever the global index of local node

i is smaller than that of node j. As for this approach, we can give the following theorem:

Theorem 4.1. If the prism mesh is constructed without quadrangular prisms, the indexing
approach can always triangulate the prism mesh into a valid tetrahedra mesh.

Proof. First, we consider the lateral face shared by any of two prisms V and V ′. Without
loss of generality, we assume this face is F V

1 in V and F V ′
1 in V ′. Then according to the way

we numbered the local prism vertices, we must have pV,t1 = pV
′,t

2 and pV
′,t

1 = pV,t2 . Therefore,

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 35

the diagonals of F V
1 and F V ′

1 are both based on the comparison between the global indices
of pV,t1 and pV,t2 , which proved that these two diagonals must match each other.

Second, we prove that those assigned diagonals result in valid triangulation for all the
prisms. Assume that there exists one triangular prism V which fails to have a valid tri-
angulation. Denote the global indices of p1V, t, p

V,t
2 and pV,t3 as I1, I2 and I3, respectively.

According to table 4.1, it means that we have either I1 > I2 > I3 > I1 or I1 < I2 < I3 < I1,
which reaches a contradiction.

Unfortunately, the problem with this indexing algorithm is that the diagonal combination
may not give a valid triangulation for each local quadrangular prism. Motivated by this,
we look for a triangulation solution which works for arbitrary diagonal combinations of
polygonal prisms. Note that for any polygonal prism, if all its faces have been triangulated
(these surface triangulations do not necessarily provide a valid triangulation of the prism),
we can always insert an interior node within the prism (e.g. at the center of the prism) and
achieve a valid prism triangulation by connecting it to all the prisms vertices. In figure 4.7,
we show how to apply this idea to quadrangular, pentagonal and hexagonal prisms. Using
this, the triangulation of quadrangular prisms corresponding to edge flipping turns out to be
very straightforward. Also, it is not difficult to employ this idea for prisms corresponding to
edge splitting or collapsing operations. For such prisms, again we insert a center node and
connect it to all nodes on the surface (note that there might be some additional nodes on
the surface besides the prism vertices).

Quadrangular Case Pentagonal Case Hexagonal Case

Figure 4.7: Triangulation of polygonal prisms with an additional interior node.

One important step of this approach is how to determine the position of the extra inserted
node. Assume that the space-time coordinates of the inserted nodes is (xe, te). Then in order
to produce a valid local triangulation of any polygonal prism without inverted tetrahedra,
the coordinates of the inserted node must have the following property:

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 36

For any τ such that t ≤ τ ≤ t + ∆t, denote the intersection polygon of the polygonal
prism on time level τ as Pτ , the spatial part xe of the coordinates must satisfy the following
conditions:

• xe must be within Pτ .

• If xe is connected to all the vertices of Pτ , the resulting triangulation must be valid
without inverted triangles.

In practice, the temporal part te is often chosen as t + 1
2
∆t. Furthermore, we find that

since we can control the mesh motion and avoid large displacements by adjusting the timestep
∆t and the pseudo-timestep δ, the intersection polygons Pτ have very similar shape for all
t ≤ τ ≤ t+ ∆t. Therefore, as a approximation, we choose the spatial part of the coordinates
xe such that xe only has to satisfy the two properties above for polygon Pt+ 1

2
∆t.

It is easy to see that if polygon Pt+ 1
2

∆t is convex, any interior point of this polygon
satisfies the conditions above. For example, the centroid of Pt+ 1

2
∆t is one possible candidate.

However, when Pt+ 1
2

∆t is non-convex, the centroid may not satisfy the second requirement

at all times (See Figure 4.8).

Figure 4.8: An example of an invalid triagulation for a non-convex polygon. The point
marked in red is the inserted node.

Motivated by this, we first notice that each edge of the polygon determine an infinite line
in the plane. In order to avoid inverted elements, xe must be chosen such that xe is always
on the same side as the inside normal direction of this line. Mathematically, if the line is
expressed by a · x = b for some constant a and b, the constraint above can be represented
by a linear inequality as a · xe ≤ b. If we apply this constraint to all the edges. Then we
can express a system of linear inequalities by

Axe ≤ b, A ∈ Rnf×d b ∈ Rnf (4.31)

where nf is the number of edges. Note that in our problem, A and b can be determined by
the geometry of the polygon Pt+ 1

2
∆t, and if xe is chosen such that Eq 4.31 is satisfied, we can

make sure that the local polygonal prism can be validly triangulated with the inserted node.

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 37

To further improve the mesh quality, assume that by connecting the vertices of Pt+ 1
2

∆t to

xe, we obtain a triangulation of Pt+ 1
2

∆t as T h = {K} and we determine xe by solving the
following optimization problem with linear constraints:

min
xe

∑
K∈T h

1

Q(K)4

s.t. Axe ≤ b (4.32)

where Q(K) is the element quality defined by Eq 3.6.
Note that in 2D, edge flippings only happen within convex quadrilaterals, but when den-

sity control is implemented for pairs of triangles, edge splitting and collapsing may happen
within non-convex quadrilaterals. More importantly, the use of Eq 4.32 is particularly crit-
ical for 4D space-time mesh generation since 3D local mesh topology changes may happen
frequently within non-convex polyhedra. We will get back to this discussion later.

Next, we continue using the notations from section 4.3.2. By combining this center-
node insertion method with the indexing idea, we reach a new algorithm of space-time mesh
generation for 2D problems, shown in algorithm 4.2. In summary, the main idea for this
algorithm has two parts: first, the diagonals assigned by our indexing approach guarantee
valid triangulation of all the triangular prisms; second, an additional node is inserted within
each quadrangular prism to help complete a valid triangulation.

Although the idea of algorithm 4.2 appears more clear and simple than algorithm 5.1, we
have to mention that algorithm 4.2 may create many more tetrahedra than algorithm 5.1. For
example, for a quadrangular prism corresponding to edge flipping operation, algorithm 5.1
is able to locally triangulate it using 5 or 6 tetrahedra; on the other hand, algorithm 4.2
has to use 12 tetrahedra to triangulate the same prism. This means that for complicated
geometric motions that need a number of local connectivity changes, the space-time mesh
from algorithm 4.2 may have about twice as many elements as that from algorithm 5.1.
Moreover, since both algorithms mainly depend on combinatoric properties, the computa-
tional efficiency is roughly comparable. Therefore, in practice, algorithm 5.1 is chosen for
our numerical tests in two spatial dimensions.

However, algorithm 4.2 turns to be much more attractive when considering 4D space-time
mesh generation, which we will discuss next.

4.4.2 Generalization of Prisms, Lateral Faces and Diagonals

Before moving to our algorithm for 4D space-time meshes, we need some more understanding
about geometries in 4 dimensions, analogous to our procedures in section 4.3. First of all,
we can understand the geometric structure of a triangular prism in a way of point-wise
extrusion, that it is formed by extruding a 2D simplex from t to t + ∆t. To generalize this
idea, we can extrude a d-dimensional simplex from t to t+ ∆t to form a (d+ 1)-dimensional
prism. For example, when d = 1, we can extrude a line segment with unit length to form

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 38

Algorithm 4.2 Space-Time Mesh Generation with Insertion of Additional Nodes

Require: A spatial mesh MESH1 of Ωt and MESH2 of Ωt+∆t

Ensure: A space-time mesh STMESH of Ω[t, t+ ∆t]
Create prisms by extruding elements from MESH1 to MESH2 and make a list of prisms
called PList.
Index all the nodes on Ωt except those to be removed from Ωt+∆t by our local density
control operations.
while PList is non-empty do

Pop a prism V from PList
if V is triangular then

Set n = 3.
else

Set n = 4.
Set an additional node pV,t+

1
2

∆t whose coordinates are determined by solving
Eq 4.32.

Connect pV,t+
1
2

∆t to all the nodes on the surface of V .
end if
for i from 1 to n do

Set j = (i mod 3) + 1
Set the global indices of pV,ti and pV,tj as I1 and I2, respectively.
if I1 < I2 then

Set diagonal of face F V
i as pV,ti pV,t+∆t

j .
else

Set diagonal of face F V
i as pV,tj pV,t+∆t

i .
end if

end for
Push all the elements from the resultant triangulation of V into STMESH

end while
return STMESH

a 2D ‘prism’ (i.e. a rectangle). When d = 3, we extrude a tetrahedra to form a so-called
4D-prism.

Moreover, we can further generalize the definition of the ‘lateral face’ of a (d + 1)-
dimensional prism. In figure 4.9, we can see that a rectangle has lateral faces as two line
segments, which can be treated as 1D prisms; and for a triangular prism, it has three lateral
faces as 2D prisms. Using the same logic, any d-dimensional prism should have d lateral
faces as (d− 1)-dimensional prisms.

Finally, we also have to generalize the definition of diagonals of lateral faces. As the bot-
tom and top ‘faces’ of a (d+1)-dimensional prism V are two d-dimensional simplices, we de-
note the vertices of these simplices as {pV,t1 , pV,t2 , . . . pV,td } and {p1V, t+ ∆t, pV,t+∆t

2 , . . . pV,t+∆t
d },

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 39

2D ‘Prism’ 3D Prism 4D ‘Prism’

Figure 4.9: ‘Prisms’ and ‘Lateral Faces’ in 2D, 3D and 4D. In each case, the right is a ‘prism’
and the left is one of its ‘lateral faces’.

2D Prism 3D Prism 4D Prism

Geometry of Bottom/Top Face Line Segment Triangle Tetrahedra

Geometry of Lateral Faces Line Segment Rectangle Triangular prism

Number of Lateral Faces 2 3 4

Number of Diagonals
(

2
2

) (
3
2

) (
4
2

)
Table 4.2: Summary of the geometric properties for prisms in 2D, 3D and 4D.

then the diagonal can be understood as any line segment with the following form

pV,ti pV,t+∆t
j i 6= j (4.33)

To complete the diagonal assignment in d+ 1 dimensions, we mean that for each pair {i, j}
when 1 ≤ i < j ≤ d, we choose one of the two possible diagonals pV,ti pV,t+∆t

j and pV,t+∆t
i pV,tj .

In this way, we know that we need assign
(
d
2

)
diagonals for a (d + 1)-dimensional prism

for triangulation, which is consistent with the number of edges of a d-dimensional simplex.
Lastly, we summarize these geometric properties in table 4.2.

4.4.3 Extension to 3D Problems

In this section, we prove that algorithm 4.2 can be directly applied to the case with three
spatial dimensions plus one temporal dimension.

First, recall that when considering tetrahedral space-time meshes, we extrude elements to
form either a triangular prism or a quadrangular prism using the idea of point-wise extrusion.
For 3D spatial meshes, the mesh nodes still have the same point-wise relationship (except
those nodes added or removed by local density change operations). Therefore, if we connect
every mesh node from the tetrahedral spatial mesh of the 3D domain Ωt to that of Ωt+∆t,
geometrically, we again form a space-time mesh using 4D-prisms. Here, for simplicity of the
description, we introduce the definitions of two different 4D-prisms:

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 40

Definition 4.3. We define simple 4D-prisms as those formed by extruding a single tetrahe-
dron which is not involved in any local operations, and define complex 4D-prisms as those
formed by extruding a group of tetrahedra involved in the same local connectivity or density
change operation.

Note that simple 4D-prisms are simply the regular prisms that we discussed in sec-
tion 4.4.2. Next, we discuss how to apply algorithm 4.2 to 4D space-time mesh generation
with two steps.

Step 1: Indexing and the Triangulation of Simple 4D-Prisms
First, we use exactly the same indexing approach to assign diagonals in the 4D case as
that in section 4.4.1. Consider any simple or complex 4D prism, with vertices denoted by
{pV,t1 , pV,t2 , . . . pV,tm } and {p1V, t+ ∆t, pV,t+∆t

2 , . . . pV,t+∆t
m } (m > 4 for complex 4D-prisms). We

then globally index all the mesh nodes (expect those added or removed by density change
operations), and denote the global indices of {pV,t1 , pV,t2 , . . . pV,tm } as {I1, I2, . . . Im}. We connect

pV,ti pV,t+∆t
j if Ii < Ij, or pV,tj pV,t+∆t

i if Ii > Ij. Then we can prove the following theorem:

Theorem 4.2. If the 4D prism mesh is constructed purely by simple 4D-prisms, the indexing
approach can always triangulate the prism mesh into a valid tetrahedral mesh. More precisely,
in each simple 4D-prism, if we have the ordered vertices {pV,t(1), p

V,t
(2), p

V,t
(3), p

V,t
(4)} with I(1) < I(2) <

I(3) < I(4), the simple 4D-prism is triangulated by the following four 4D-simplices with vertex
sets

T1 = {pV,t(1), p
V,t+∆t
(1) , pV,t+∆t

(2) , pV,t+∆t
(3) , pV,t+∆t

(4) }, T2 = {pV,t(1), p
V,t
(2), p

V,t+∆t
(2) , pV,t+∆t

(3) , pV,t+∆t
(4) }

T3 = {pV,t(1), p
V,t
(2), p

V,t
(3), p

V,t+∆t
(3) , pV,t+∆t

(4) }, T4 = {pV,t(1), p
V,t
(2), p

V,t
(3), p

V,t
(4), p

V,t+∆t
(4) } (4.34)

Proof. First, by theorem 4.1, we can see: 1. For the lateral face (i.e. the triangular prism)
shared by any of two simple prisms V and V ′, the three assigned diagonals on the side of V
are respectively matched by those assigned from V ′. 2. The assigned three diagonals must
provide a valid triangulation on that lateral face. Moreover, as a preliminary check, it is
easy to verify that for each vertex set in (4.34), any two vertices are connected based on our
indexing approach, indicating that the four 4D-simplices in (4.34) have really been formed.

Second, we show that these 4D-simplices form a valid triangulation of any simple prism.
We consider a reference simple prism with

pV,t(1) = {0, 0, 0, 0} , pV,t+∆t
(1) = {0, 0, 0, 1} , pV,t(2) = {1, 0, 0, 0} , pV,t+∆t

(2) = {1, 0, 0, 1}

pV,t(3) = {0, 1, 0, 0} , pV,t+∆t
(3) = {0, 1, 0, 1} , pV,t(4) = {0, 0, 1, 0} , pV,t+∆t

(4) = {0, 0, 1, 1} (4.35)

For any d-dimensional simplex T = {p1, p2, . . . , pd+1}, the volume Vol(T) is given by

Vol(T) = | 1
d!

det (p2 − p1, p3 − p1, . . . , pd+1 − p1)| (4.36)

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 41

Denote the bottom face of this reference 4D-prism as T ∗ with vertex set {pV,t(1), p
V,t
(2), p

V,t
(3), p

V,t
(4)}.

Since the ‘height’ of the reference 4D-prism is 1, we know that the volume of the reference
4D-prism is equal to Vol(T ∗). Based on Eq 4.36, a simple computation shows that

Vol(T ∗) =
4∑
i=1

Vol(Ti). (4.37)

Therefore, we know that the volume of four 4D-simplices is equal to the volume of the
reference prism. Next, we show that the four 4D-simplices do not have intersection, that is,

Vol(Ti ∩ Tj) = 0, ∀0 < i < j ≤ 4 (4.38)

Based on the coordinates in Eqs 4.35, we express any convex combination pi of vertices of
4D-simplex Ti as

p1 = a1p
V,t
(1) + b1p

V,t+∆t
(1) + c1p

V,t+∆t
(2) + d1p

V,t+∆t
(3) + e1p

V,t+∆t
(4) = (c1, d1, e1, b1 + c1 + d1 + e1) (4.39)

p2 = a2p
V,t
(1) + b2p

V,t
(2) + c2p

V,t+∆t
(2) + d2p

V,t+∆t
(3) + e2p

V,t+∆t
(4) = (b2 + c2, d2, e2, c2 + d2 + e2) (4.40)

p3 = a3p
V,t
(1) + b3p

V,t
(2) + c3p

V,t
(3) + d3p

V,t+∆t
(3) + e3p

V,t+∆t
(4) = (b3, c3 + d3, e3, d3 + e3) (4.41)

p4 = a4p
V,t
(1) + b4p

V,t
(2) + c4p

V,t
(3) + d4p

V,t
(4),+e4p

V,t+∆t
(4) = (b4, c4, d4 + e4, e4) (4.42)

If we require that all the coefficients are positive (i.e. exclude the case when the point is on
the surface), then we can summarize the possibilities as follows:

• If any point can be expressed by Eq 4.39, it cannot be expressed by Eq 4.40, 4.41 or
4.42, since the sum of the first three components of the coordinate is smaller than the
last component in Eq 4.39 but it is greater in the other Eqs.

• If any point can be expressed by Eq 4.40, it cannot be expressed by Eq 4.41 or 4.42,
since the sum of the second and the third components of the coordinate is smaller than
the last component in Eq 4.40 but it is greater in the other two Eqs.

• Any point cannot be expressed by both Eq 4.41 and 4.42, since the third components
of the coordinate is smaller than the last component in Eq 4.41 but it is greater in
Eq 4.42.

Therefore, we conclude that Eq 4.38 holds for the vertices in Eqs 4.35. Combining Eq 4.37
and 4.38, we have proved that T1, T2, T3 and T4 construct a valid triangulation of the
reference simple 4D-prism.

For an arbitrary simple 4D-prism (including those mildly distorted by the DistMesh mesh-
node movement), suppose there exists a smooth mapping to transform it into the reference
4D-prism. Since there are no mesh topology (connectivity) changes during this mapping,
this finally shows that T1, T2, T3 and T4 construct a valid triangulation of an arbitrary simple
4D-prism with mild distorion.

CHAPTER 4. SPACE-TIME DISCONTINUOUS GALERKIN METHODS 42

Step 2: Node Insertion and the Triangulation of Complex 4D-Prisms
According to theorem 4.2, we know that the indexing approach from algorithm 4.2 can be
directly applied to the 4D cases and it creates valid a triangulation for simple 4D-prisms.
However, complex 4D-prisms may not be able to be triangulated by the assigned diagonals.
Therefore we again study their triangulation using additional node insertion.

As illustrated in figure 4.7, we split our approach of triangulating complex 4D-prisms
into two stages: 1. triangulate all the surfaces; 2. insert one node and connect it to all the
surface nodes. First, we have to understand the triangulation of the surfaces in the first
stage. Since these complex 4D-prisms are associated with either local connectivity changes
or density control operations, from figure 3.3 and 3.5, we can see that the top and bottom
‘faces’ of a complex 4D-prisms are always triangulated polyhedra. As for the lateral faces,
first we can see that according to the summary of the simple 4D-prisms in table 4.2, the
number of lateral faces for a complex 4D-prism should be equal to the number of boundary
faces of the top/bottom polyhedron and all the lateral faces are simply triangular prisms.
For example, recall that our connectivity or density change operations in 3D have similar
structures with a k-sided polygon in the middle and two nodes on each side of it. For such
structures, the 4D-prism has 2k lateral faces in total.

As the second stage, we can use the similar approach to determine the position of the
inserted node as that in 2D. First, it is not difficult to see that for any τ such that t ≤ τ ≤
t+∆t, the intersection geometry of a complex 4D-prism at time level τ is a polyhedron. Then
if the spatial part of the coordinates of the inserted node is again xe, for any polyhedron
intersection Pτ , it must satisfy

• xe must be within Pτ .

• If xe is connected to all the vertices of Pτ , the resulting triangulation is valid without
inverted tetrahedra.

Again, as a approximation, we only have to find xe satisfying these two conditions for
polyhedron intersection Pt+ 1

2
∆t. Similar to the 2D case, the centroid of Pt+ 1

2
∆t can be chosen

for convex polyhedra but it might not even be inside Pt+ 1
2

∆t for a non-convex case. Therefore,
a more robust algorithm to find xe is to solve the optimization problem Eq 4.32. The only
difference is that in 3D, each linear inequality constraint is associated with a boundary face
of Pt+ 1

2
∆t, where for each plane determined by a boundary face of Pt+ 1

2
∆t, xe must be on

the same side as the inside face normal direction.
Finally, using exactly the same procedure as the proof of theorem 4.2, we can find a

reference complex 4D-prism corresponding to each local operation and prove: 1. our indexing
idea can ensure the valid triangulation for each lateral face; 2. The volume sum of 4D-
simplices created by this node insertion idea is equal to the volume of the reference 4D-
prism; 3. any two of these resultant 4D-simplices have zero-volume intersection. With these
properties, we can conclude that our indexing idea plus node-insertion technique is able to
deliver a unstructured 4D space-time mesh with 4D-simplices.

43

Chapter 5

Arbitrary Lagrangian-Eulerian
Discontinuous Galerkin Methods with
Local L2 Projections

In chapter 4, we described our space-time framework with a straightforward discretization
of the unified spatial and temporal dimensions. As an alternative, here we discuss another
strategy for addressing the large deformations using a mapping-based Arbitrary Lagrangian-
Eulerian (ALE) framework.

5.1 Arbitrary Lagrangian-Eulerian Formulation

As illustrated in figure 5.1, we denote the time-varying domain as v(t) ∈ Rn. Our ALE
formulation chooses a reference domain as V = V (X), which is fixed at all times, and
constructs a smoothly differentiable mapping x(X, t) : V → v(t) from the reference domain
to the moving domain, such that every point X ∈ V is mapped to a point x(X, t) ∈ v(t).
Using the procedures from [57], we can define the deformation gradient G and mapping
Jacobian g as

G = ∇x, g = detG (5.1)

In the geometric sense, G measures how much the domain v(t) deforms and g measures the
volume change due to the deformation. Besides, another important quantity for the domain
motion is the mapping velocity ν, defined as follows

ν =
∂x

∂t
. (5.2)

Finally, since the boundary integrals and integration by substitution are frequently used in
the derivations below, it is important to understand the elemental transformation in advance.
As shown in figure 5.1, we denote the normal vectors on v(t) and V by n andN , respectively.

CHAPTER 5. ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS
GALERKIN METHODS WITH LOCAL L2 PROJECTIONS 44

Figure 5.1: The mapping between the reference domain and the physical domain in the ALE
framework.

Then the relationship between the elemental area and the element volume can be derived by
Nanson’s formula:

(dx · n)ds = dv = gdV = g(dX ·N)dS = g((G−1dx) ·N)dS = (dx · (gG−TN))dS (5.3)

where since dx 6= 0, we have nds = gG−TNdS.
We can use these quantities and relationships to rewrite the conservation law from the

physical domain v(t) into a new system in the reference domain V . We again consider the
compressible Navier-Stokes equations in v(t) as a system of conservation laws as in Eq 2.7,

∂u

∂t
+∇x · F inv

x (u) = ∇x · F vis
x (u,∇xu). (5.4)

Note that here the gradient∇x is corresponding to the variables x for v(t). We then consider
the integral form of Eq 5.4 and by the Reynolds transport theorem [11], we obtain∫

v(t)

∂u

∂t
dv =

∂

∂t

∫
v(t)

udv −
∫
∂v

u(ν · n)ds

=

∫
V

∂(gu)

∂t
dV −

∫
∂V

u(ν · (gG−TN))dS

=

∫
V

∂(gu)

∂t
dV −

∫
∂V

(g(u⊗ ν)G−T) ·N)dS

=

∫
∂V

(F vis
x − F inv

x) · (gG−TN))dS

=

∫
∂V

(g(F vis
x − F inv

x)G−T) ·N)dS (5.5)

CHAPTER 5. ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS
GALERKIN METHODS WITH LOCAL L2 PROJECTIONS 45

Therefore, by introducing a new gradient ∇X corresponding to the variables X for V , we
get the modified version of a system of conservation laws in V as

∂U

∂t
+∇X · F inv

X (U) = ∇X · F vis
X (U ,∇XU), (5.6)

where the new solution U and the corresponding inviscid and viscous fluxes can be written
as,

U = gu, F inv
X = g(F inv

x − u⊗ ν)G−T , F vis
X = gF vis

x G−T (5.7)

and by the chain rule, we also have,

∇xu = (∇X(g−1U))G−1 = (g−1∇XU +U ⊗∇X(g−1))G−1. (5.8)

We refer to Ref [57] for more details on the derivation of this transformation.

5.2 Numerical Scheme

5.2.1 Discretization

We next describe the standard Discontinuous Galerkin (DG) formulation to solve the com-
pressible Navier-Stokes equations in the reference domain V . Again, we repeat the technique
used in chapter 4. A standard procedure is used for the viscous terms, where the system 5.6
is split into a first-order system of equations:

∂U

∂t
+∇X · F inv

X (U) = ∇X · F vis
X (U , q) (5.9)

∇XU = q. (5.10)

Similar to section 4.2, we introduce a triangulation T h = {K} of the spatial reference domain
V into elements K. On T h, we define the broken space VhT and Σh

T as [31],

VhT = {v ∈ [L2(V)]d | v|K ∈ [Pp(K)]d ∀K ∈ T h}, (5.11)

Σh
T = {σ ∈ [L2(V)]m×d | σ|K ∈ [Pp(K)]m×d ∀K ∈ T h} (5.12)

where d is the spatial dimension, m is the number of components in solution U , and Pp(K)
denotes the space of polynomials of degree at most p ≥ 1 on K. Then the DG formulation for
equations (5.9) and (5.10) becomes: find Uh ∈ VhT and qh ∈ Σh

T such that for each K ∈ T h,
we have∫

K

∂Uh

∂t
· vhdx−

∫
K

F inv
X (Uh) : ∇Xv

h dx+

∮
∂K

(F̂ inv
X · n) · vh ds

= −
∫
K

F vis
X (Uh, qh) : ∇Xv

h dx+

∮
∂K

(F̂ vis
X · n) · vh ds, ∀vh ∈ VhT (5.13)∫

K

qh : σh dx = −
∫
K

Uh · (∇X · σh) dx+

∮
∂K

(Ûh ⊗ n) : σh ds, ∀σh ∈ Σh
T . (5.14)

CHAPTER 5. ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS
GALERKIN METHODS WITH LOCAL L2 PROJECTIONS 46

For numerical fluxes, we again use Roe’s method [68] to approximate the inviscid flux F̂ inv
X · n

(see Eq 4.10) and treat the viscous fluxes F̂ vis
X · n and Ûh using the Compact Discontinuous

Galerkin (CDG) method proposed in [54] (see Eqs 4.24 and 4.25). Our formulation of
Eqs 5.13 and 5.14 is based on method-of-lines. Recall that the CDG method combines
Eqs 5.13 and 5.14 to remove the dependency of qh, which leads to a final non-linear semi-
discrete system formulated only for Uh.

5.2.2 Geometric Conservation Law

In addition to Eq 5.6, a special treatment is required since the formulation above is unable
to obtain a sufficiently accurate approximation solution when the true solution is constant
[75]. To address this so-called geometric conservation law (GCL) problem, we follow the
technique from [57] and solve an additional equation on the reference domain at each time
step by introducing a new approximation ḡ to the Jacobian g as

∂ḡ

∂t
−∇X · (gG−1ν) = 0 (5.15)

Note that the exact solution of Eq 5.15 is ḡ = g, but it can only solve for an approximation
to g due to the numerical discretization. Then we solve a modified version of Eq 5.6

∂Ũ

∂t
+∇X · F̃ inv

X (Ũ) = ∇X · F̃Xvis(Ũ ,∇XŨ), (5.16)

where Ũ = ḡu, and the fluxes F̃ inv
X and F̃ vis

X are obtained by replacing u from Eqs 5.7 with
Ũ/ḡ. Again, Eqs 5.16 are solved using the same descretization from section 5.2.1.

Lastly, note that the flux term in Eq 5.15 is independent of Ũ and ḡ. Since most of
our numerical tests are based on prescribed domain motions, g, G and ν can be calculated
directly at each time step as well as the flux term. In practice, we consider the integral form
of Eq 5.15 and discretize using the same DG approach. This leads to a set of ODEs with
respect to ḡ.

5.2.3 Temporal Integration

Based on Eq 5.15 and 5.16, we have two nonlinear discretized systems at each time step,

M1 ˙̄gh = R1(X) (5.17)

M2U̇
h = R2(Uh) (5.18)

where M1 and M2 are mass matrices. There is a number of ODE solvers which can be used
to solve the equations above and the Runge-Kutta Methods are popular choices. Eq 5.17
is trivial to solve and at each time step, we first solve ḡ and then plug it into Eq 5.18.
Due to stability issues, an implicit solver is preferred for Eq 5.18 to avoid severe constraints

CHAPTER 5. ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS
GALERKIN METHODS WITH LOCAL L2 PROJECTIONS 47

0.43586652 0.43586652 0 0
0.71793326 0.28206674 0.43586652 0

1 1.20849665 -0.64436317 0.43586652
1.20849665 -0.64436317 0.43586652

Table 5.1: Butcher’s Array for the DIRK3 scheme.

on the timestep ∆t. Among implicit Runge-Kutta Methods, we employ a parallel high-
order diagonally implicit Runge-Kutta (DIRK) solver with the corresponding Butcher’s array
shown in table 5.1.

More precisely, each stage of the DIRK scheme can be expressed as

M2k
n+1
i = R2(Un + ∆t

i∑
j=1

aijk
n+1
j) (5.19)

Once again we implement the parallel Newton-GMRES solver to compute kn+1
i iteratively

as we mentioned in section 4.2.3. During hte (s + 1)th iteration, the adjustment δkn+1
i is

defined by solving the linear system

(M2 −
∂R2

∂kn+1
i

)δkn+1
i = R2(Un + ∆t

i∑
j=1

aijk
n+1,(s)
j) (5.20)

More details on the solver can be found in [58, 56].

5.3 Local L2 Projections

Note that in the discrete ALE formulation from section 5.2, if we set the mesh velocity ν to
the velocity components in solution Uh, the formulation becomes purely Lagrangian. [20]
proposed a Lagrangian approach for fluid simulation with curvilinear finite elements, but
a main difficulty for applying the fully Lagrangian framework to fluid problem is that the
mesh can be easily entangled and destroyed due to complicated fluid motions such as vortex
shedding.

Instead, the ALE framework gives more flexibility for choosing a smoother mapping
x(X, t), and it can construct the mesh motion independently of the solution vector Uh.
For this reason, the ALE framework appears quite attractive for flow problems on moving
meshes. In many ALE simulations, the mesh is moved without connectivity changes for
as many steps as possible and the transformed Navier-Stokes equations are solved in the
reference domain based on well-conditioned smoothly differentiable mappings x(X, t). But
for problems involving large domain deformation, the mesh will eventually become poorly
shaped due to the appearance of nearly inverted elements. As shown in figure 5.2, a cross is

CHAPTER 5. ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS
GALERKIN METHODS WITH LOCAL L2 PROJECTIONS 48

placed in the center with a fixed outside square wall. The mesh quality decreases significantly
as the cross starts spinning and the motion will finally invert the elements around the cross.
To address this, remeshing can be used to replace the old triangulation T h = {K} by a new
one T̃ h = {K̃} in the reference domain V such that the mapping image of the new mesh in
the physical domain v(t) maintains high quality. In addition to remeshing, we also need an
efficient and accurate interpolation approach to transfer the solution between the old and
the new meshes. Here, we focus on L2 projections and introduce its mechanism next.

t = 0 t = 0.4 t = 0.8

Figure 5.2: Moving Meshes for a Spinning Cross without Topology Change. Three sample
plots are given to show the mesh motion under the ALE framework.

5.3.1 Formulation

When we change mesh topology, the reference domain is still V but we created an alternative
triangulation T̃ h on V . Consider the broken spaces Vh

T̃
and Σh

T̃
, which are similar to the

spaces defined in Eqs 5.11 and 5.12 but associated with T̃ h. Recall that in section 4.2, we
mentioned that the standard DG procedure expresses the numerical solution Uh as a linear
combination of shape functions {φ1, φ2, . . . , φNp} on the broken space VhT ,

Uh =

Np∑
i=1

Uiφi. (5.21)

In order to continue the time-stepping after remeshing, a new approximate solution to
Uh ∈ VhT is required corresponding to T̃ h. Denote the shape functions of Vh

T̃
by {φ̃1, φ̃2, . . . , φ̃Ñp},

and the L2 projection of Uh onto Vh
T̃

by Ũh. This projection satisfies the following property:

for each K̃ ∈ T̃ h, ∫
K̃

(Uh − Ũh)φ̃idx = 0, ∀i = 1, . . . , Ñp. (5.22)

CHAPTER 5. ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS
GALERKIN METHODS WITH LOCAL L2 PROJECTIONS 49

More precisely, if we also expand Ũh by Galerkin formulation as

Ũh =

Ñp∑
i=1

Ũiφ̃i, (5.23)

then Eq 5.22 can be written as

Ñp∑
i=1

∫
K̃

Ũiφ̃iφ̃jdx =

Np∑
i=1

∫
K̃

Uiφiφ̃jdx

=

Np∑
i=1

∑
K∈T h

∫
K̃∩K

Uiφiφ̃jdx, ∀j = 1, . . . , Ñp. (5.24)

The Eq 5.24 result in a linear system,

MŨh = PUh (5.25)

where we call M as mass matrix and P as projection matrix. They have the following form,

Mj,i =

∫
K̃

φ̃iφ̃jdx, Pj,i =
∑
K∈T h

∫
K̃∩K

φiφ̃jdx. (5.26)

Eq 5.25 can be solved for Ũh by simply inverting M , and used as the transferred solution
to resume the time-stepping process on the new triangulation T̃ h. Note that the projection
may lose accuracy if we compute the residual using the new solution Ũh, but later on our
numerical results will show that the introduced error appears negligible and will not affect
the overall order of convergence even with frequent projections. Moreover, one important
advantage of using DG scheme is that unlike continuous Galerkin methods, DG defines both
φi and φ̃i as discontinuous element-wise polynomials, which implies that the mass matrix
M has a block-wise format. This property allows us to locally compute each block of M
within each K̃ and invert it at a low computational cost.

However, also because of this element-wise property, the second equal sign of Eq 5.24
indicates that each new element K̃ must be split into a collection of disjoint intersections
K̃ ∩K for some K ∈ T h. Dealing with these projections directly for two arbitrary meshes
poses several difficulties. For example, in figure 5.3, we create two independent meshes for
the same unit square domain and try to do L2 projection from mesh 1 to mesh 2 following
Eq 5.24. First, we can see that an efficient and robust cut-cell algorithm is required to split
the elements of mesh 2 in order to locate all the intersections K̃ ∩ K. In particular for
3D tetrahedral meshes, this is a fairly involved procedure. Second, again from figure 5.3,
we notice that the intersections of simplex elements can have many possible shapes, and a
sophisticated quadrature technique for arbitrary polygons or polyhedra must be incorporated
for the evaluation of the volume integrals. Therefore, it can be concluded that L2 projections
for global remeshing is not an ideal approach for solution transfer.

CHAPTER 5. ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS
GALERKIN METHODS WITH LOCAL L2 PROJECTIONS 50

Mesh 1 Mesh 2 Mixed Mesh

Figure 5.3: An Example of Global Remeshing. The 3rd plot overlaps mesh 1 with mesh 2.

Motivated by this, we try to combine our moving-mesh strategy from chapter 3 with
the ALE framework. Our strategy can address the large deformations using local topol-
ogy changes. Also, by taking advantage of our mesh moving techniques with local mesh
operators and discontinuous element-wise polynomial solutions of the DG method, we can
develop a simpler and more efficient algorithm to handle arbitrary deformations using local
L2 projections.

5.3.2 Implementation

The details of our method are described in algorithm 5.1. For simplicity, here we consider the
algorithm without local density control operations. Then our mesh improvement strategy
has two stages. The first stage only moves the nodes without any mesh topology changes.
Therefore, it allows us to construct a smooth map and we can solve for one time step using
a standard ALE method. Next, if needed, the second stage is to change the connectivity
locally. In this stage, all the node positions are fixed before and after the connectivity
change, so we can conduct our local L2 projections within each group of flipped elements
and transfer the solution efficiently. Unlike our space-time method, we use a while-loop for
the connectivity change part in algorithm 5.1, indicating that multiple sweeps can be run
under the condition that each element can be only involved in one operation of connectivity
change. The algorithm repeats the two stages above and evolves the solution throughout
the entire time period.

In 2D cases, it is clear that each local flipping operator replaces two old elements by two
new elements, as shown in figure 5.5. In other words, the old pair {K1, K2} and the new
pair {K̃1, K̃2} share the same group of vertices, so 4 sub-triangles {K̃1 ∩K1, K̃1 ∩K2, K̃2 ∩
K1, K̃2 ∩ K2} are always formed as their intersections. The integrals in Eq 5.24 are then
straightforward to evaluate based on these four sub-triangles and thus the components of
solution Uh within two old elements are transferred into those of the new solution Ũh with
respect to the two new elements. Except for the pairs of flipped elements, all other compo-
nents of Uh and Ũh are unchanged. A 2D example is shown in figure 5.4 to demonstrate
how one step of our algorithm performs.

CHAPTER 5. ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS
GALERKIN METHODS WITH LOCAL L2 PROJECTIONS 51

Phase I Phase II Phase III Phase IV

Figure 5.4: An illustration of the process in algorithm 5.1. Phase I: Select blue nodes to
move; Phase II: Update interior nodes by force-based smoothing; Phase III: Select pairs of
elements in red for flipping; Phase IV: Change the local connectivity within each pair of red
elements.

Algorithm 5.1 Discontinuous Galerkin ALE Method with Local L2 Projections

Require: Triangulation T h and initial solution Uh,t0 at t0
Require: Time step ∆t and mesh quality threshold δ
Ensure: Solution Uh,ti for each time step ti until time T

while t0 < ti ≤ T do
Move the mesh by the DistMesh algorithm [60]
Compute deformation gradient G, mapping velocity ν and mapping Jacobian g
Solve Uh,ti by the DG method with ALE framework
while min quality of K ∈ T h < δ do

Create T̃ h by local element flipping
Solve for Ũh,ti by local L2 projections
T h ← T̃ h
Uh,ti ← Ũh,ti

end while
end while

In 3D, similarly to the 2D cases, we also need to split the old and the new tetrahedra
into sub-tetrahedra at the second stage and then implement the local L2 projections by
evaluating the integrals of Eq 5.24 in each of the sub-tetrahedra. This tetrahedral splitting
is significantly more complicated than in 2D. However, since the connectivity changes are
limited to a small group of tetrahedra, it is straightforward to analyze the resulting geometric
structures and to consider all possible cases of splitting for each operation.

From figure 3.3, we can see that for any 3D operation, the old and the new groups of
elements provide two different triangulations of a polyhedron with a special structure, which
has a polygon (triangle, quadrilateral or pentagon) in the middle with one node on each side
(top and bottom in the figure). By connecting these top and bottom nodes, we can find an
intersection between the middle polygon and the connecting line (marked with a red cross

CHAPTER 5. ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS
GALERKIN METHODS WITH LOCAL L2 PROJECTIONS 52

The old pair The new pair Sub-triangles

Figure 5.5: Local element splitting in 2D.

Figure 5.6: Tetrahedral splitting for 3D operations. In each plot, the triangulation of the
middle polygon is on the left and the corresponding 3D triangulation is on the right. The
red cross is the intersection between the middle polygon and the connecting line between
the top and the bottom nodes.

in each plot of figure 5.6). Recall that we employ 4 different operations for 3D problems (see
figure 3.3), and we can consider the splitting of each group of tetrahedra into sub-tetrahedra
case by case. The resulting triangulation gives all the sub-tetrahedra needed for computing
the integrals in Eq 5.24:

• Operation I and II are about the transformations between 2 and 3 tetrahedra. As

CHAPTER 5. ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS
GALERKIN METHODS WITH LOCAL L2 PROJECTIONS 53

upper left plot in figure 5.6, we connect the center intersection to each vertex of the
middle triangle, and connect all the middle nodes to the top and the bottom nodes.

• Operation III corresponds to transforming 4 elements into 4 new ones. The upper
right plot in figure 5.6 shows that we can first triangulate the middle quadrilateral by
assigning a diagonal. The intersection of the connecting line is then located in one
of the two resultant triangles. Connect this intersection point to each vertex of the
middle quadrilateral, and finally connect all the middle nodes to the top and to the
bottom nodes.

• Operation IV turns 5 elements into 6 new ones. We first triangulate the middle pen-
tagon by assigning two diagonals. The intersection of the connecting line is then in
the middle triangle or in one of the two side triangles (Two different cases are shown
in figure 5.6). Connect this intersection point to each vertex of the middle pentagon,
and for the latter case, add another edge in addition to the diagonals and the edges
connecting the intersection and the vertices, in order to complete a valid triangulation
of the pentagon (see the last plot in figure 5.6). Finally connect all the middle nodes
to the top and the bottom nodes.

Lastly, note that we have not included our density control operations in this ALE approach.
But based on the analysis from chapter 3, it is not difficult to see that due to the same locality
property, we can develop similar splitting strategies as in figure 5.5 and 5.6 to implement the
local projections for these operations. In conclusion, the main idea behind our algorithm is
to carry out local L2 projections and avoid the implementation of the complicated and less
accurate cut-cell algorithm. For more details about this local L2 projection, we refer to [86].

54

Chapter 6

Numerical Results

In this chapter, we will validate our space-time and ALE methods via a number of numerical
test cases. Through these tests, we try to show that our proposed methods not only provide
solutions with high-order accuracy, but also have the ability to handle complex geometric
motion. Furthermore, we also point out the potential use of our numerical schemes in
engineering projects, by a practical application involving the simulation of multiple vertical
axis wind turbines.

Note that all the simulations are carried out using the 3DG software[59], programmed in
a mixed language model with Matlab, Python and C++ code.

6.1 Euler Vortex

As our first numerical experiment, we demonstrate the high-order accuracy of the numerical
schemes by solving for a propagating compressible Euler vortex. Both the space-time and
the ALE schemes are tested in 2D, and an additional 3D case is particularly designed for
the ALE framework with local 3D L2 projections.

6.1.1 2D Case

In 2D, we solve the Euler equations for a model problem of a compressible vortex in a 5-by-5
square domain and make a convergence test for both of our discontinuous Galerkin methods.
The vortex is initially centered at (x0, y0) = (0.8, 0.8) and moves to (xT , yT) = (4.2, 4.2)
with the free-stream at an angle θ = π/4 with respect to the x-axis. At each (x, y, t), the

CHAPTER 6. NUMERICAL RESULTS 55

θ = 0 θ = π
2 θ = π θ = 3π

2

Figure 6.1: An illustration of the moving meshes. The five blues nodes are rotated about
the center of the domain in a rigid manner, which induces other vertex movements and local
element flipping. Note that θ is the degrees that the blue nodes have rotated about the
center.

analytical solutions of velocity u and v, density ρ and pressure p are given by

u = u∞(cos θ − ε((y − y0)− v̄t)
2πrc

exp(
f(x, y, t)

2
))

v = u∞(sin θ +
ε((x− x0)− ūt)

2πrc
exp(

f(x, y, t)

2
))

ρ = ρ∞(1− ε2(γ − 1)M2
∞

8π2
exp(f(x, y, t)))

1
γ−1

p = p∞(1− ε2(γ − 1)M2
∞

8π2
exp(f(x, y, t)))

γ
γ−1 (6.1)

where f(x, y, t) = (1 − ((x − x0) − ūt)2 − ((y − y0) − v̄t)2)/r2
c . Using the same notations

as in chapter 2, we use M∞ = 0.1 as the Mach number and γ = 1.4 as the adiabatic gas
constant. u∞ = 1, p∞ = (γM2

∞)−1 and ρ∞ = 1 are free-stream velocity, pressure and density,
respectively. Moreover, ū and v̄ are the Cartesian components of the free-stream velocity
with ū = u∞ cos θ and v̄ = u∞ sin θ. The parameter ε = 2.0 is the strength of the vortex and
rc = 0.5 is its size.

As a starting point, an unstructured mesh of the domain is created with element size h
by DistMesh [60]. In order to show that our method remains high-order accurate even for
large mesh deformations, we rotate some of the vertices counter-clockwise about the center
of the domain with the angular velocity ω = 0.33 rad/s. Since the walls of the domain are
not moving, the rotation of the vertices induces large mesh deformations. To avoid inverted
and low-quality elements, we improve the elements by our mesh node movement and edge
flipping techniques. The process of this mesh motion is illustrated in figure 6.1.

Next we solve the Euler equations on this moving mesh until time T = 3.4
√

2 with
a Dirichlet boundary condition given by the analytic solution. Due to our choice of ω,
the rotating nodes rotate about 90 degrees within the time period T , which provides large
enough deformations and a sufficient number of local mesh topology changes. We compare

CHAPTER 6. NUMERICAL RESULTS 56

the numerical results with the analytical solutions above. Some sample solutions of the
pressure field are shown in figure 6.2.

Space-Time Method
For our space-time DG method, since it depends on a conforming unstructured space-time
mesh without using the method of lines, we are mainly interested in its space-time con-
vergence rather than merely the spatial one. To test this convergence, we first create two
refinement sequences: one where we refine the mesh size h and fix ∆t << h and another
where we refine ∆t and fix h << ∆t. We then compare the numerical errors based on
the h and ∆t from these sequences and eventually find that the errors are almost equal
when h from the first sequence is roughly the same as ∆t from the second sequence, which
numerically shows that the spatial and temporal parts of the errors are comparable when
h ≈ u∞∆t = ∆t.

Next, we carry out the space-time convergence test for a range of spatial mesh sizes h and
polynomial degrees p. Note that for all the numerical tests for our space-time method in this
chapter, we use the same polynomial degree p for both space and time. Moreover, we set ∆t
(i.e. the thickness of each space-time mesh slab) equal to h in each case. For a comparison,
we also solve the problem using the same space-time framework on a fixed mesh, where no
vertices are rotated and thus the initial unstructured mesh remains unchanged for all time
steps. In figure 6.2, a few sample space-time meshes are given to illustrate our space-time
mesh slabs, and the bottom convergence plot compares the errors in the discrete space-time
L2-norm of our space-time DG method for the moving and the fixed mesh cases, respectively.
It can be seen that the solutions from our moving meshes have essentially the same accuracy
as the ones using a fixed mesh. Furthermore, from the convergence plot, the results clearly
show that the orders of convergence are approximately O(hp+1).

ALE Method with local L2 Projection
Alternatively, we simulate the same Euler vortex problem using our local ALE approach
with frequent local L2 projections to show its high-order accuracy.

First, we use the same moving mesh model as shown in figure 6.1 in order to generate
large mesh deformations. The Euler equations 6.1 are then solved until time T = 3.4

√
2 but

with timestep ∆t = 0.006. We also reduce the angular velocity ω to ensure that the rotating
nodes again rotate about 90 degrees within T . Note that since the novelty of this method
is mainly in its spatial discretization and solution transferring techniques, we deliberately
choose small time step ∆t such that ∆t << h to ensure that the temporal numerical errors
are negligible and truncation errors are dominated by the spatial discretization. This choice
of small ∆t is not due to the limitations of the edge flips or due to any stability restrictions
from the discretization, we could have chosen a much larger ∆t if we allowed for temporal
errors, which has already been shown in the space-time convergence test.

We carry out the convergence test for a range of spatial mesh sizes h and polynomial
degrees p, and compute inf-norms of the errors. Again, we solve the same problem using a

CHAPTER 6. NUMERICAL RESULTS 57

Mesh Slab of Ω[0,∆t] Mesh Slab of Ω[T
2
−∆t, T

2
] Mesh Slab of Ω[T −∆t, T]

Pressure Field at t = 0 Pressure Field at t = T
2 Pressure Field at t = T

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Typical element size h

D
is

c
re

te
 L

2
 e

rr
o
r

p=1

p=2

p=3

1

2

1

3

1

4

Fixed Mesh

Moving mesh

Figure 6.2: Space-Time Convergence Test for the Euler Vortex Problem. The top three
plots are samples of space-time meshes with ∆t = h = 0.3125 and p = 3. Below each mesh,
the corresponding solutions are shown in pressure fields. The pressure plots uses the ’hot‘
colormap in Matlab with range [68.5, 71.6]. The bottom plot shows the convergence results
for p = 1, 2 and 3.

CHAPTER 6. NUMERICAL RESULTS 58

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Typical element size h

In
f−

n
o
rm

 e
rr

o
r

p=1

p=2

p=3

1

2

1

3

1

4

Fixed Mesh

Moving mesh

Figure 6.3: Euler-Vortex Convergence Plot for the ALE Method with Local L2 Projections.

standard nodal DG scheme on the fixed initial mesh as a benchmark. From the resulting
convergence plot in figure 6.3, it is still clear that for both methods, the optimal O(hp+1)
orders of convergence are obtained.

6.1.2 3D Case

The last Euler-vortex example is used to demonstrate the ability of our moving mesh strategy
to adjust the mesh quality in 3D and achieve high-order accuracy for the ALE method with
local L2 projections. Similar to the 2D example, we propagate an Euler vortex cylinder in
a 10 × 10 × 10 cube (as shown in figure 6.4). The analytical solutions at (x, y, z, t) are the
same as in Eqs 6.1 for each fixed time t. All the parameters are assigned he same values
except that (x0, y0) = (−2,−2), M∞ = 0.5, ε = 3.0 and rc = 0.75.

The mesh of the cube is initially generated as a 3D Cartesian grid. To show the effective-
ness of our moving mesh approach, we induce large mesh deformations by rigidly rotating a
set of interior mesh nodes with respect to the y-axis, which are showed in red in figure 6.4.
These red nodes are chosen as all the mesh nodes of the initial grid with x ∈ [−2.5, 2.5],
y ∈ [−2.5, 2.5] and z = 0. The Euler vortex travels from t = 0 to t = T =

√
32 + 32 and the

set of red nodes are rotated about 30 degrees throughout the time interval [0, T]. With these
rigid motions, the mesh quality decays rapidly and will eventually be unacceptable without
mesh adjustments. On the contrary, when our moving mesh is employed, the mesh quality
can be retained by smoothing mesh nodes and locally flipping the tetrahedra. In figure 6.4,

CHAPTER 6. NUMERICAL RESULTS 59

Moving Mesh at t = 0 Moving Mesh of t = T Sample solution plot of Euler Vortex

10
−0.7

10
−0.5

10
−0.3

10
−0.1

10
0.1

10
−4

10
−3

10
−2

10
−1

Typical element size h

D
is

c
re

te
 L

2
 e

rr
o

r

p=1

p=2

p=3

1

2

1

3

1

4

Fixed mesh

Moving mesh

Convergence Plot

Figure 6.4: Convergence Test for the 3D Euler Vortex Problem. The upper left and middle
plots are two sample meshes at the initial and the final time, respectively. These meshes are
generated on a 10 × 10 × 10 cube. The blue faces show a cross-section of the tetrahedral
mesh and the green faces are the outside surfaces of the cube. The red nodes are rotated
rigidly. The right plot shows some sample pressure isosurfaces, which uses the ‘jet’ colormap
in Matlab with range [2.2377, 2.5871].

CHAPTER 6. NUMERICAL RESULTS 60

Figure 6.5: Initial Spatial Mesh of a Spinning Cross. The left zoom-in figure is for the upper
right part of the initial mesh on the right.

we can clearly see that the initially structured mesh quickly becomes fully unstructured and
that it respects the motion of the red nodes. All element qualities remain acceptably high
throughout the process.

Finally, we solve the 3D Euler vortex cylinder problem with periodic boundary conditions
imposed on the vertical boundaries, using different spatial mesh sizes h and polynomial
degrees p. Again, we choose ∆t << h so that the effect of the temporal error is negligable
in this convergence test. As a benchmark, the same test is also carried out with the initial
mesh fixed for all time steps, where the standard nodal DG scheme is implemented for the
spatial discretization. The convergence plot in figure 6.4 illustrates that the test with moving
meshes achieves the same optimal O(hp+1) order of accuracy as the fixed mesh, even with
frequent elements flipping in 3D.

6.2 Spinning Cross

Next, we consider a 3-by-3 square domain where a cross is spinning counterclockwise about
the center, which is similar to the example problem in [65]. We solve the compressible Navier-
Stokes equations starting from a zero-velocity initial condition with viscous wall conditions
on all boundaries, and set the Mach number to 0.2 and the Reynolds number to 1500, based
on the cross diameter 1.5 and the angular velocity ω = 1.

As shown in figure 6.5, we initialize the mesh by gluing three parts together: two graded
meshes around the fixed outside walls and the spinning cross walls, and a Cartesian grid in
the middle. To simplify the mesh movement, we move the graded mesh around the cross
rigidly with the geometry movement, fix the graded mesh around the outside walls, and
only apply our moving mesh and flipping techniques to the uniform mesh in the middle.

CHAPTER 6. NUMERICAL RESULTS 61

Mesh at t = 0 Mesh at t = T
5

Mesh at t = 2T
5

Mesh at t = 3T
5

Mesh at t = 4T
5 Mesh at t = T

Figure 6.6: Examples of Spatial Meshes and Space-Time Mesh Slabs. Note that to better
illustrate our space-time mesh structure, we rescale the thickness of our space-time mesh
slabs, which is not equal to the real ∆t we used for the simulation.

Figure 6.6 shows that our method can retain the quality of the elements even with the large
deformations induced by the spinning cross.

We set ∆t = 0.01 and simulate the compressible flow around this spinning cross until
T = 3π. Again, we implement both of our space-time DG and ALE-DG schemes for the
same problem.

For the space-time DG scheme, a few space-time mesh slabs are given in figure 6.6. In

CHAPTER 6. NUMERICAL RESULTS 62

order to better resolve the solution, we implement our method with polynomial orders p = 2
and linear element geometries. Entropy plots of the flow solutions at a few time steps are
shown in figure 6.7. Note that the optimal order of accuracy O(hp+1) will not be achieved
unless the boundary of the cross is also curved, which is an important future improvement.

Entropy Plot at t = 1.0 Entropy Plot at t = 2.0 Entropy Plot at t = 3.0

Entropy Plot at t = 4.0 Entropy Plot at t = 5.0 Entropy Plot at t = 6.0

Entropy Plot at t = 7.0 Entropy Plot at t = 8.0 Entropy Plot at t = 9.0

Figure 6.7: Space-Time DG solutions for Compressible Navier-Stokes flow in a domain
with a spinning cross (entropy). It uses the reverse ‘hot’ colormap in Matlab with range
[17.85, 18.05].

For our ALE DG method, we use polynomial degrees p = 3. Entropy plots of the flow
solutions at a few time steps are shown in figure 6.8. From these entropy plots we can see
that our local L2 projections keep the solutions from losing the numerical accuracy, even
with frequent mesh topology changes based on our moving-mesh strategy.

CHAPTER 6. NUMERICAL RESULTS 63

Entropy Plot at t = 1.0 Entropy Plot at t = 2.0 Entropy Plot at t = 3.0

Entropy Plot at t = 4.0 Entropy Plot at t = 5.0 Entropy Plot at t = 6.0

Entropy Plot at t = 7.0 Entropy Plot at t = 8.0 Entropy Plot at t = 9.0

Figure 6.8: ALE DG solutions for Compressible Navier-Stokes flow in a domain with a spin-
ning cross (entropy). It uses the reverse ‘hot’ colormap in Matlab with range [18.02, 18.32].

6.3 Pitching Tandem Airfoils

Next, we consider a compressible Navier-Stokes simulation similar to the one studied in [85].
It consists of two pitching NACA0012 airfoils with chord length c = 1 in a rectangular
domain. As shown in figure 6.9, at the initial time t = 0 the two foils have a zero pitching
angle and are aligned on the horizontal axis close to each other. The distance between the
trailing edge of the first foil and the leading edge of the second foil is d = 0.1. The two foils
are both treated as rigid bodies and rotated around the points p = c/3 to the right of their
leading edges. The rotation follows a prescribed harmonic function as

θ = A sin(−2πft) (6.2)

where A = π/6 and f = 0.05. The flow has Mach number 0.2 and Reynolds number 3000.

CHAPTER 6. NUMERICAL RESULTS 64

0.1

!

c/3

!

c/3

c=1 c=1

! θ θ
!

Foil A Foil B

Figure 6.9: Schematics of the pitching tandem airfoil problem.

Unstructured Mesh of the spatial domain at t = 5.0 Zoom-in Mesh at t = 5.0

Unstructured Mesh of the spatial domain at t = 10.0 Zoom-in Mesh at t = 10.0

Unstructured Mesh of the spatial domain at t = 15.0 Zoom-in Mesh at t = 15.0

Figure 6.10: Sample Spatial Meshes of Two Pitching Tandem Airfoils.

CHAPTER 6. NUMERICAL RESULTS 65

As the two foils are placed very close and rotated based on the same harmonic function,
the mesh quality decays very rapidly if only the position of the nodes are updated. On the
contrary, our moving mesh strategy only requires an unstructured two-dimensional mesh of
the initial domain Ω0 and is able to improve the mesh automatically by local mesh operations.
In this way, the moving mesh remains well shaped and avoids inverted elements. The mesh
motion is illustrated in figure 6.10.

We implement both our high-order space-time DG method and ALE-DG method with
polynomial degrees p = 2 and linear element geometries. The compressible Navier-Stokes
equations are solved with viscous wall conditions on the airfoils and far-field conditions on the
outside boundaries. A couple of sample entropy plots are shown in figure 6.11. In figure 6.12,
drag and lift coefficients computed from these two methods are compared. Through the plots,
although the simulation of these unsteady flows is highly sensitive to small perturbations,
we can conclude that the two approaches are able to predict similar forces.

6.4 Airfoil with a Deploying Spoiler

As an example of a more complicated domain deformation, we use our space-time DG method
to solve for the compressible flow around a NACA0012 airfoil with chord length 1, in a 6× 2
rectangular domain, similar to the problem introduced in [64]. As illustrated in figure 6.13,
the foil is located between x = 0 to x = 1 with axis of symmetry y = 0. We then remove a
right triangle with curved hypotenuse from x = 0.6383 to x = 0.7534 and replace it by a thin
spoiler of length 0.1. We keep a horizontal gap of width 2 × 10−3 between the foil and the
spoiler, which are only connected at the point (0.6383, 0.0422). An adaptive mesh is applied
with refined elements around the spoiler. When the spoiler is deployed, it rotates about the
connecting point with the foil with the angular velocity 0.1, which generates a large domain
deformation around the spoiler. To address this, we update the adaptive mesh size function
at each timestep and improve the mesh quality by our local mesh operations.

We impose viscous wall conditions on both the airfoil and the spoiler, and far-field condi-
tions on the outside boundaries. The numerical simulation starts with a steady flow around
the airfoil with a closed spoiler, at Mach number 0.2 and Reynolds number 5000, based on
the airfoil chord length 1 and the free-stream velocity 1. Next, we fix the foil but raise the
spoiler gradually up to a 90 degrees angle, which results in massive flow separation behind
the foil. We keep the spoiler at the vertical state for a short time period, and then close
it again by reversing the motion. During this entire process, we use our space-time DG
method to solve for the compressible viscous flow during the raising and the closing part,
and a regular two-dimensional method-of-lines DG method for the time period when the
spoiler position is fixed. Again, as in the previous tests, we use polynomial orders p = 2
with linear element geometries, in order to better resolve the solution fields.

In figure 6.13, some mesh plots are given to show how our local mesh operations improve
the spatial mesh as the spoiler is raised, and three samples of entropy plots are shown in
figure 6.14. In the zoom-in plots, we can confirm that our space-time DG method retains the

CHAPTER 6. NUMERICAL RESULTS 66

Entropy Plot at t = 5.0 (Space-Time) Entropy Plot at t = 10.0 (Space-Time)

Entropy Plot at t = 15.0 (Space-Time) Entropy Plot at t = 20.0 (Space-Time)

Entropy Plot at t = 5.0 (ALE) Entropy Plot at t = 10.0 (ALE)

Entropy Plot at t = 15.0 (ALE) Entropy Plot at t = 20.0 (ALE)

Figure 6.11: Numerical results for the pitching tandem airfoils. There are solution fields for
both space-time and ALE methods (entropy of the flow at 4 time instances). It uses the ‘jet’
colormap in Matlab with range [17.79, 18.18].

high quality of the solutions even for the large deformation between the foil and the spoiler.
The lift and the drag coefficients during the entire process are shown in figure 6.15.

6.5 Double Vertical Axis Wind Turbines

Inspired by section 6.2, we can see that our numerical schemes are particular useful for
solving problem with rotating geometries. Therefore, in this section, we will apply our
ALE-DG method to simulate the 2D compressible flow around vertical axis wind turbines
(VAWTs). Here we mainly discuss the numerical methods used in this application, and more
details about the engineering designs and the physical interpretations can be found in [38].

Recent studies show that the vertical axis wind turbines have some advantages over hori-

CHAPTER 6. NUMERICAL RESULTS 67

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time

L
if
t

C
o

e
ff

ic
ie

n
ts

 C
L

Foil A ALE DG

Foil A Space−Time DG

Lift Coefficients for Foil A

0 2 4 6 8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

3

Time

L
if
t

C
o

e
ff

ic
ie

n
ts

 C
L

Foil B ALE DG

Foil B Space−Time DG

Lift Coefficients for Foil B

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

D
ra

g
 C

o
e

ff
ic

ie
n

ts
 C

D

Foil A ALE DG

Foil A Space−Time DG

Drag Coefficients for Foil A

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

2

Time

D
ra

g
 C

o
e

ff
ic

ie
n

ts
 C

D

Foil B ALE DG

Foil B Space−Time DG

Drag Coefficients for Foil B

Figure 6.12: The drag and lift forces on the pitching tandem NACA0012 airfoils as a function
of time for both the space-time and the ALE methods.

zontal axis wind turbines such as their ability to produce electricity in any wind direction as
well as its lower production and maintenance cost. Similar to many engineering problems,
the design of VAWTs usually requires considerable experimental costs, and computational
approaches are often employed to provide high-fidelity simulations in order to better un-
derstand the mechanism and optimize the VAWT design. In this section, we simulate the
compressible isentropic flow using Large Eddy Simulation (LES). As LES performs best for
low to medium Reynolds number simulations, we model the turbines in conditions similar
to if the blades were rotating in water, such as the turbine studied experimentally in [73].

In [38], the simulation of 2D isentropic turbulent flow around a single VAWT is first
studied. As for the numerical method, it is quite straightforward to apply the standard
ALE framework with a nodal DG scheme (see [57]) to this problem, and a smooth ALE
mapping can be simply constructed by rotating the entire mesh. Then the problem moves
to the simulation related to multiple VAWTs, or a so-called ‘wind farm’. This problem has
substantial practical significance since experimental results show that the use of counter-

CHAPTER 6. NUMERICAL RESULTS 68

The initial spatial mesh at t = 0.0

Zoom-in mesh near spoiler at t = 0.0 Zoom-in mesh near spoiler at t = 6.0

Zoom-in mesh near spoiler at t = 12.0 Zoom-in mesh near spoiler at t = 18.0

Figure 6.13: Spatial Meshes of the Airfoil with a Deploying Spoiler.

rotating VAWTs is able to generate higher power output per unit land area [16]. Here we
simplify the model to a double counter-rotating VAWT, as illustrated in figure 6.16.

However, unlike the single VAWT model, the double counter-rotating VAWTs are more
difficult to simulate directly using the ALE framework. The entire mesh cannot be rotated
like in the single turbine case, and due to the counter-rotating motion it is almost impossible
to find a smooth mapping with unchanged mesh topology, in particular for the area in-
between the turbines. Instead, we solve this problem using our ALE-DG method with local
L2 projections, which can easily handle arbitrary mesh topology changes.

CHAPTER 6. NUMERICAL RESULTS 69

Entropy Plot at t = 12.0 Zoom-in Entropy Plot near spoiler at t = 12.0

Entropy Plot at t = 28.0 Zoom-in Entropy Plot near spoiler at t = 28.0

Entropy Plot at t = 44.0 Zoom-in Entropy Plot near spoiler at t = 44.0

Figure 6.14: Space-Time DG Solutions for Compressible Navier-Stokes flow around an air-
foil with a deploying spoiler. It uses the reverse ‘hot’ colormap in Matlab with range
[17.79, 18.18].

0 5 10 15 20 25 30 35 40 45
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time

D
ra

g
 C

o
e

ff
ic

ie
n

ts
 C

D

0 5 10 15 20 25 30 35 40 45
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time

L
if
t

C
o

e
ff

ic
ie

n
ts

 C
L

Figure 6.15: Drag and lift coefficients around the NACA0012 airfoil with a deploying spoiler
as a function of time.

CHAPTER 6. NUMERICAL RESULTS 70

Counter-rotating
turbines

Gearboxes &
generators easily
accesible

Stationkeeping lines
(50m-200m+
depth)

Controllable platform
orientation

Figure 6.16: Schematics of the double vertical axis wind turbines. (Image from [38])

Our model is defined on an 8-by-4 meter rectangular domain and we use two counter-
rotating turbines, similar to the single turbine built in [73]. This turbine has two NACA0012
airfoils with chord lengths c = 9.14 m as the blades for each turbine. The radius of each
turbine is r = 0.61 m and the distance between the centers of the turbines is d = 1.5r.
The left turbine is rotating counter-clockwise with angular velocity ω ≈ 0.75 rad/s and the
right one is rotating clockwise with the same magnitude of angular velocity. The free-stream
velocity is [0,−1]T m/s which means that the wind goes from north to south. The Mach
number M = 0.02 and the kinematic viscosity ν = 10−6 m/s2.

As shown in figure 6.17, we create a mesh for the two turbines and for the outside area,
respectively. We then glue these three parts of the mesh together by connecting the boundary
nodes between the mesh of the outside area to that of turbines. This form two layers of
elements around the two turbines, whose elements are colored in red in figure 6.17. To
enhance the efficiency of our moving-mesh strategy, we restrict our edge flipping operations
to only these two layers of triangles. This mesh motion is also illustrated in figure 6.17.

We then solve the compressible isentropic flow around these two counter-rotating turbines
with timestep ∆t = 0.005 s and polynomial degrees p = 3. Again, viscous wall conditions
are imposed on the turbine blades and far-field conditions on the outside boundaries. The
simulation results are plotted in figure 6.18 in different physical quantities. Through the
plots, we can see that even with frequent L2 projections around the turbines, our ALE-DG
method is able to resolve the solutions as the turbines spin, and capture most of the features
of the turbulent flow around blades.

CHAPTER 6. NUMERICAL RESULTS 71

The initial spatial mesh at t = 0.0

Figure 6.17: Unstructured Mesh for Double VAWTs. The initial mesh is showed on the top,
where all the edge flipping operations happen in the area colored in red. In order to show
the mesh motion, three zoom-in plots are placed on the bottom for the area circled by a
yellow window in the top plot.

CHAPTER 6. NUMERICAL RESULTS 72

u2 Plot at t = 0.84 u2 Plot at t = 1.68

u2 Plot at t = 2.52 u2 Plot at t = 3.36

Vorticity Plot at t = 0.84 Vorticity Plot at t = 1.68

Vorticity Plot at t = 2.52 Vorticity Plot at t = 3.36

Figure 6.18: Numerical results for double VAWTs. Sample solutions are plotted for the y-
component of the velocity and for the vorticity field, respectively. The plots for y-component
of the velocity used reverse RdBu colormap in Python’s matplotlib module. The color range
is [0.003656, 0.014624]. The plots for vorticity used RdBu colormap with the color range is
[−50, 50].

CHAPTER 6. NUMERICAL RESULTS 73

Mesh at t = 0.0 Mesh at t = 2.5 Mesh at t = 5.0

Mesh at t = 7.5 Mesh at t = 10.0 Mesh at t = 12.5

Mesh at t = 15.0 Mesh at t = 17.5 Mesh at t = 20.0

Figure 6.19: Sample 3D Meshes for Spinning Ellipsoid Problem. The surface mesh of the
inside ellipsoid and outside sphere is colored in green. The blue faces show a cross-section
of the spherical mesh.

CHAPTER 6. NUMERICAL RESULTS 74

6.6 Rotating 3D Ellipsoid

Next, we demonstrate that our ALE-DG method has the capability to handle large defor-
mation problems in 3D. Here our test case is analog to the section 6.2, and we consider a
spherical domain with a spinning ellipsoid in the center. The radius of the outside sphere is
10 and the centered ellipsoid has three semi-principal axes of length 6, 3.75 and 3.75, and
rotates about the z-axis with angular velocity ω = 0.1πrad/s.

As shown in figure 6.19, we use an adaptive tetrahedral mesh to refine the area around
the ellipsoidal and the spherical boundaries in order to resolve the solution. As the ellipsoid
spins, our moving-mesh strategy keeps adjusting the mesh quality by locally changing the
mesh connectivity, and avoids the appearance of inverted elements.

The compressible flow starts from zero free-stream velocity, and has Mach number 0.2
and dynamical viscosity µ = 1/1500. The viscous wall conditions are set for both the central
spinning ellipsoid and the outside sphere. We then use our ALE-DG method to solve the
flow problem with polynomial degrees p = 2 and locally transfer the solution during mesh
topology changes using our local L2 projections (figure 5.6). Finally, some sample solutions
are illustrated in figure 6.20.

CHAPTER 6. NUMERICAL RESULTS 75

Solution at t = 0.0 Solution at t = 2.5 Solution at t = 5.0

Solution at t = 7.5 Solution at t = 10.0 Solution at t = 12.5

Solution at t = 15.0 Solution at t = 17.5 Solution at t = 20.0

Figure 6.20: Sample Solutions for Spinning Ellipsoid Problem. The surface of the spinning
ellipsoid is painted in green and we plot the Mach solution on the entropy isosurface. It uses
the ‘jet’ colormap in Matlab with range [0, 0.25].

76

Chapter 7

Conclusion & Future Work

In this thesis, we proposed new methods for solving compressible flow problems on moving
domains with large deformations. First, we described our moving-mesh strategy which em-
ploys a number of local mesh operations to adjust for arbitrary geometric motion. Based on
this strategy, we developed two different numerical methods for this class of problems. The
first approach derived a DG scheme in a space-time framework and introduced efficient and
robust algorithms for generating space-time meshes. The second approach considered the
DG scheme in an ALE framework and handled the solution transferring for mesh topology
changes using efficient local L2 projections. Finally, we verified the high-order accuracy and
the capability to address large deformation problems of our two numerical methods using
various numerical simulations.

For future work, since currently we are mainly working on linear elements, the exten-
sion to curved meshes is critical in order to achieve high-order accuracy in problems with
curved boundaries. This involves both the curved space-time mesh generation and the im-
plementation of the local L2 projections for curved elements. Moreover, the robustness of
our moving-mesh strategy and the resulting mesh quality should be investigated, in partic-
ular for the 3D case. To improve the robustness, we should be able to dynamically pick the
pseudo time-step in the DistMesh algorithm in a more systematic way and to add some ad-
ditional local mesh topology operations to handle more configurations of tetrahedra. Also,
since problems with complicated motions may include topology changes, we also need to
handle this difficulty with some special treatment around the domain boundary. Computa-
tionally, for large-scale simulations, it is necessary to parallelize both our space-time mesh
generation and the local L2 projections, which is non-trivial and requires some techniques to
communicate solutions and meshes between different processes. Finally, like for the VAWT
simulation, more real engineering applications should be carried out for both our methods,
which will help us better understand these methods and to improve them in order to meet
the specified requirements arising from different needs.

77

Bibliography

[1] Reza Abedi et al. “Spacetime meshing with adaptive coarsening and refinement”. In:
4th Symposium on Trends in Unstructured Mesh Generation, 7th US National Congress
on Computational Mechanics. Citeseer. 2003.

[2] F. Alauzet. “Efficient moving mesh technique using generalized swapping”. In: Pro-
ceedings of the 21th International Meshing Roundtable. Sandia Nat. Lab., 2012, pp. 17–
37.

[3] SK Aliabadi and TE Tezduyar. “Space-time finite element computation of compressible
flows involving moving boundaries and interfaces”. In: Computer Methods in Applied
Mechanics and Engineering 107.1 (1993), pp. 209–223.

[4] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. “Unified analysis of dis-
continuous Galerkin methods for elliptic problems”. In: SIAM J. Numer. Anal. 39.5
(2001/02), pp. 1749–1779. issn: 1095-7170.

[5] Farinatti Aymone and José Lufs. “Mesh motion techniques for the ALE formulation
in 3D large deformation problems”. In: International journal for numerical methods in
engineering 59.14 (2004), pp. 1879–1908.

[6] Antonio Baeza and Pep Mulet. “Adaptive mesh refinement techniques for high-order
shock capturing schemes for multi-dimensional hydrodynamic simulations”. In: Inter-
national journal for numerical methods in fluids 52.4 (2006), pp. 455–471.

[7] Francesco Bassi and Stefano Rebay. “A high-order accurate discontinuous finite ele-
ment method for the numerical solution of the compressible Navier–Stokes equations”.
In: Journal of computational physics 131.2 (1997), pp. 267–279.

[8] Marek Behr. “Simplex space–time meshes in finite element simulations”. In: Interna-
tional journal for numerical methods in fluids 57.9 (2008), pp. 1421–1434.

[9] Henning Braess and Peter Wriggers. “Arbitrary Lagrangian Eulerian finite element
analysis of free surface flow”. In: Computer Methods in Applied Mechanics and Engi-
neering 190.1 (2000), pp. 95–109.

[10] Paul Castillo. “Performance of discontinuous Galerkin methods for elliptic PDEs”. In:
SIAM Journal on Scientific Computing 24.2 (2002), pp. 524–547.

[11] Alexandre Joel Chorin, Jerrold E Marsden, and Jerrold E Marsden. A mathematical
introduction to fluid mechanics. Vol. 3. Springer, 1990.

BIBLIOGRAPHY 78

[12] B. Cockburn and C.-W. Shu. “Runge-Kutta discontinuous Galerkin methods for convection-
dominated problems”. In: J. Sci. Comput. 16.3 (2001), pp. 173–261. issn: 0885-7474.

[13] Bernardo Cockburn and Chi-Wang Shu. “The local discontinuous Galerkin method for
time-dependent convection-diffusion systems”. In: SIAM Journal on Numerical Anal-
ysis 35.6 (1998), pp. 2440–2463.

[14] Phillip Colella, Daniel T. Graves, Benjamin J. Keen, and David Modiano. “A Cartesian
grid embedded boundary method for hyperbolic conservation laws”. In: J. Comput.
Phys. 211.1 (2006), pp. 347–366. issn: 0021-9991.

[15] Gaëtan Compere, Jean-François Remacle, Johan Jansson, and Johan Hoffman. “A
mesh adaptation framework for dealing with large deforming meshes”. In: International
journal for numerical methods in engineering 82.7 (2010), pp. 843–867.

[16] John O Dabiri. “Potential order-of-magnitude enhancement of wind farm power density
via counter-rotating vertical-axis wind turbine arrays”. In: Journal of Renewable and
Sustainable Energy 3.4 (2011), p. 043104.

[17] A De Boer, MS Van der Schoot, and H Bijl. “Mesh deformation based on radial basis
function interpolation”. In: Computers & structures 85.11 (2007), pp. 784–795.

[18] James W Demmel. Applied numerical linear algebra. Siam, 1997.

[19] Benoıt Desjardins, Emmanuel Grenier, P-L Lions, and Nader Masmoudi. “Incom-
pressible Limit for Solutions of the Isentropic Navier–Stokes Equations with Dirichlet
Boundary Conditions”. In: Journal de mathématiques pures et appliquées 78.5 (1999),
pp. 461–471.

[20] VA Dobrev, TE Ellis, Tz V Kolev, and RN Rieben. “Curvilinear finite elements for La-
grangian hydrodynamics”. In: International Journal for Numerical Methods in Fluids
65.11-12 (2011), pp. 1295–1310.

[21] Jean Donea. “Arbitrary Lagrangian-Eulerian finite element methods”. In: Computa-
tional methods for transient analysis(A 84-29160 12-64). Amsterdam, North-Holland,
1983, (1983), pp. 473–516.

[22] Jim Douglas and Todd Dupont. “Interior penalty procedures for elliptic and parabolic
Galerkin methods”. In: Computing methods in applied sciences. Springer, 1976, pp. 207–
216.

[23] Jeff Erickson, Damrong Guoy, John M Sullivan, and Alper Üngör. “Building spacetime
meshes over arbitrary spatial domains”. In: Engineering with Computers 20.4 (2005),
pp. 342–353.

[24] C. Farhat and P. Geuzaine. “Design and analysis of robust ALE time-integrators for
the solution of unsteady flow problems on moving grids”. In: Comput. Methods Appl.
Mech. Engrg. 193.39-41 (2004), pp. 4073–4095. issn: 0045-7825.

[25] David A Field. “Laplacian smoothing and Delaunay triangulations”. In: Communica-
tions in applied numerical methods 4.6 (1988), pp. 709–712.

BIBLIOGRAPHY 79

[26] David A. Field. “Qualitative measures for initial meshes”. In: Internat. J. Numer.
Methods Engrg. 47 (2000), pp. 887–906.

[27] Bradley Froehle and Per-Olof Persson. “A high-order discontinuous Galerkin method
for fluid–structure interaction with efficient implicit–explicit time stepping”. In: Jour-
nal of Computational Physics 272 (2014), pp. 455–470.

[28] R Glowinski et al. “A fictitious domain approach to the direct numerical simulation of
incompressible viscous flow past moving rigid bodies: application to particulate flow”.
In: Journal of Computational Physics 169.2 (2001), pp. 363–426.

[29] A. Guardone, D. Isola, and G. Quaranta. “Arbitrary Lagrangian Eulerian formulation
for two-dimensional flows using dynamic meshes with edge swapping”. In: J. Comput.
Phys. 230.20 (2011), pp. 7706–7722. issn: 0021-9991.

[30] Jeffrey Hellrung, Luming Wang, Eftychios Sifakis, and Joseph Teran. “A second order
virtual node method for elliptic problems with interfaces and irregular domains in three
dimensions”. In: Journal of Computational Physics 231.4 (2012), pp. 2015–2048.

[31] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods. Vol. 54.
Texts in Applied Mathematics. Algorithms, analysis, and applications. New York:
Springer, 2008, pp. xiv+500. isbn: 978-0-387-72065-4.

[32] CW Hirt, Anthony A Amsden, and JL Cook. “An arbitrary Lagrangian-Eulerian com-
puting method for all flow speeds”. In: Journal of Computational Physics 14.3 (1974),
pp. 227–253.

[33] Thomas JR Hughes and Gregory M Hulbert. “Space-time finite element methods for
elastodynamics: formulations and error estimates”. In: Computer methods in applied
mechanics and engineering 66.3 (1988), pp. 339–363.

[34] Thomas JR Hughes, Wing Kam Liu, and Thomas K Zimmermann. “Lagrangian-
Eulerian finite element formulation for incompressible viscous flows”. In: Computer
methods in applied mechanics and engineering 29.3 (1981), pp. 329–349.

[35] Gregory M Hulbert and Thomas JR Hughes. “Space-time finite element methods for
second-order hyperbolic equations”. In: Computer Methods in Applied Mechanics and
Engineering 84.3 (1990), pp. 327–348.

[36] D. Isola and A. Guardone. “Simulation of flows with strong shocks with an adaptive
conservative scheme”. In: J. Comput. Appl. Math. 236.18 (2012), pp. 4660–4670. issn:
0377-0427.

[37] Claes Johnson. “Discontinuous Galerkin finite element methods for second order hyper-
bolic problems”. In: Computer Methods in Applied Mechanics and Engineering 107.1
(1993), pp. 117–129.

[38] Samuel Kanner. “Design, Analysis and Hybrid Testing of Innovative Platforms for
Floating Vertical-Axis Wind Turbines”. PhD thesis. UNIVERSITY OF CALIFORNIA,
BERKELEY, 2015.

BIBLIOGRAPHY 80

[39] Dokyun Kim and Haecheon Choi. “Immersed boundary method for flow around an
arbitrarily moving body”. In: Journal of Computational Physics 212.2 (2006), pp. 662–
680.

[40] C. M. Klaij, J. J. W. van der Vegt, and H. van der Ven. “Space-time discontinuous
Galerkin method for the compressible Navier-Stokes equations”. In: J. Comput. Phys.
217.2 (2006), pp. 589–611. issn: 0021-9991.

[41] Christiaan M Klaij, Jaap JW van der Vegt, and Harmen van der Ven. “Pseudo-time
stepping methods for space–time discontinuous Galerkin discretizations of the com-
pressible Navier–Stokes equations”. In: Journal of Computational Physics 219.2 (2006),
pp. 622–643.

[42] Christiaan M Klaij, Marc H van Raalte, Harmen van der Ven, and Jaap JW van
der Vegt. “h-Multigrid for space-time discontinuous Galerkin discretizations of the
compressible Navier–Stokes equations”. In: Journal of Computational Physics 227.2
(2007), pp. 1024–1045.

[43] Sudeep K. Lahiri, Javier Bonet, and Jaume Peraire. “A variationally consistent mesh
adaptation method for triangular elements in explicit Lagrangian dynamics”. In: In-
ternat. J. Numer. Methods Engrg. 82.9 (2010), pp. 1073–1113. issn: 0029-5981.

[44] Randall J LeVeque. Finite volume methods for hyperbolic problems. Vol. 31. Cambridge
university press, 2002.

[45] Randall J LeVeque and Randall J Le Veque. Numerical methods for conservation laws.
Vol. 132. Springer, 1992.

[46] I. Lomtev, R. M. Kirby, and G. E. Karniadakis. “A discontinuous Galerkin ALE
method for compressible viscous flows in moving domains”. In: J. Comput. Phys. 155.1
(1999), pp. 128–159. issn: 0021-9991.

[47] Robert B Lowrie, Philip L Roe, and Bram Van Leer. “Space-time methods for hyper-
bolic conservation laws”. In: Barriers and Challenges in Computational Fluid Dynam-
ics. Springer, 1998, pp. 79–98.

[48] Karthik Mani and Dimitri Mavriplis. “Efficient Solutions of the Euler Equations in a
Time-Adaptive Space-Time Framework”. In: 49th AIAA Aerospace Sciences Meeting
and Exhibit. AIAA-2011-774. 2011.

[49] Arif Masud and Thomas JR Hughes. “A space-time Galerkin/least-squares finite el-
ement formulation of the Navier-Stokes equations for moving domain problems”. In:
Computer Methods in Applied Mechanics and Engineering 146.1 (1997), pp. 91–126.

[50] Dimitri J Mavriplis and Cristian R Nastase. “On the geometric conservation law for
high-order discontinuous Galerkin discretizations on dynamically deforming meshes”.
In: Journal of Computational Physics 230.11 (2011), pp. 4285–4300.

BIBLIOGRAPHY 81

[51] Cesar A Acosta Minoli and David A Kopriva. “Discontinuous Galerkin spectral ele-
ment approximations on moving meshes”. In: Journal of Computational Physics 230.5
(2011), pp. 1876–1902.

[52] Vinh-Tan Nguyen, Jaime Peraire, Boo Cheong Khoo, and Per-Olof Persson. “A dis-
continuous Galerkin front tracking method for two-phase flows with surface tension”.
In: Computers & Fluids 39.1 (2010), pp. 1–14.

[53] Géraldine Olivier and Frédéric Alauzet. “A new changing-topology ALE scheme for
moving mesh unsteady simulations”. In: 49th AIAA Aerospace Sciences Meeting, AIAA
Paper. Vol. 474. 2011, pp. 252–271.

[54] J. Peraire and P.-O. Persson. “The compact discontinuous Galerkin (CDG) method
for elliptic problems”. In: SIAM J. Sci. Comput. 30.4 (2008), pp. 1806–1824. issn:
1064-8275.

[55] J. Peraire and Per-Olof Persson. “Adaptive High-Order Methods in Computational
Fluid Dynamics”. In: vol. 2. Advances in CFD. World Scientific Publishing Co., 2011.
Chap. 5 – High-Order Discontinuous Galerkin Methods for CFD.

[56] P.-O. Persson. “Scalable Parallel Newton-Krylov Solvers for Discontinuous Galerkin
Discretizations”. In: 47th AIAA Aerospace Sciences Meeting and Exhibit, Orlando,
Florida. AIAA-2009-606. 2009.

[57] P.-O. Persson, J. Bonet, and J. Peraire. “Discontinuous Galerkin solution of the Navier-
Stokes equations on deformable domains”. In: Comput. Methods Appl. Mech. Engrg.
198 (2009), pp. 1585–1595.

[58] P.-O. Persson and J. Peraire. “Newton-GMRES preconditioning for discontinuous
Galerkin discretizations of the Navier-Stokes equations”. In: SIAM J. Sci. Comput.
30.6 (2008), pp. 2709–2733.

[59] P.-O. Persson, J. Peraire, et al. The 3DG Project. http://persson.berkeley.edu.

[60] P.-O. Persson and G. Strang. “A Simple Mesh Generator in MATLAB”. In: SIAM
Review 46 (2004).

[61] Per-Olof Persson. Discontinuous Galerkin Methods for Fluid Flows and Implicit Mesh
Generation. Slides for Stanford FPC Fluid Mechanics Seminar. 2006.

[62] Per-Olof Persson. “Mesh Generation for Implicit Geometries”. PhD thesis. M.I.T., Feb.
2005.

[63] Charles S Peskin. “The immersed boundary method”. In: Acta numerica 11.0 (2002),
pp. 479–517.

[64] G. Quaranta, D. Isola, and A. Guardone. “Numerical Simulation of the Opening of
Aerodynamic Control Surfaces with Two-Dimensional Unstructured Adaptive Meshes”.
In: 5th European Conference on Computational Fluid Dynamics - ECCOMAS CFD
2010. Vol. 236. 2010.

http://persson.berkeley.edu

BIBLIOGRAPHY 82

[65] Thomas C. S. Rendall, Christian B. Allen, and Edward D. C. Power. “Conservative
unsteady aerodynamic simulation of arbitrary boundary motion using structured and
unstructured meshes in time”. In: Internat. J. Numer. Methods Fluids 70.12 (2012),
pp. 1518–1542. issn: 0271-2091.

[66] Sander Rhebergen and Bernardo Cockburn. “A space-time hybridizable discontinuous
Galerkin method for incompressible flows on deforming domains”. In: J. Comput. Phys.
231.11 (2012), pp. 4185–4204. issn: 0021-9991.

[67] Sander Rhebergen, Bernardo Cockburn, and Jaap J. W. van der Vegt. “A space-time
discontinuous Galerkin method for the incompressible Navier-Stokes equations”. In: J.
Comput. Phys. 233 (2013), pp. 339–358. issn: 0021-9991.

[68] P. L. Roe. “Approximate Riemann solvers, parameter vectors, and difference schemes”.
In: J. Comput. Phys. 43.2 (1981), pp. 357–372. issn: 0021-9991.

[69] PH Saksono, WG Dettmer, and D Perić. “An adaptive remeshing strategy for flows
with moving boundaries and fluid–structure interaction”. In: International Journal for
Numerical Methods in Engineering 71.9 (2007), pp. 1009–1050.

[70] Jonathan Richard Shewchuk. “Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator”. In: Applied computational geometry towards geometric engi-
neering. Springer, 1996, pp. 203–222.

[71] Warnerius Egbert Hendrikus Sollie, O Bokhove, and JJW Van der Vegt. “Space–time
discontinuous Galerkin finite element method for two-fluid flows”. In: Journal of Com-
putational Physics 230.3 (2011), pp. 789–817.

[72] K Stein, T Tezduyar, and R Benney. “Mesh moving techniques for fluid-structure
interactions with large displacements”. In: Journal of Applied Mechanics 70.1 (2003),
pp. 58–63.

[73] James H Strickland, BT Webster, and T Nguyen. “A vortex model of the Darrieus
turbine: an analytical and experimental study”. In: Journal of Fluids Engineering 101.4
(1979), pp. 500–505.

[74] Shripad Thite. “Adaptive spacetime meshing for discontinuous Galerkin methods”. In:
Computational Geometry 42.1 (2009), pp. 20–44.

[75] PD Thomas and CK Lombard. “Geometric conservation law and its application to
flow computations on moving grids”. In: AIAA journal 17.10 (1979), pp. 1030–1037.

[76] Alper Üngör and Alla Sheffer. “Pitching tents in space-time: mesh generation for dis-
continuous Galerkin method”. In: Internat. J. Found. Comput. Sci. 13.2 (2002). Vol-
ume and surface triangulations, pp. 201–221. issn: 0129-0541.

[77] Alper Üngör, Alla Sheffer, Robert B. Haber, and Shang-Hua Teng. “Layer based so-
lutions for constrained space-time meshing”. In: Appl. Numer. Math. 46.3-4 (2003).
Applied numerical computing: grid generation and solution methods for advanced sim-
ulations, pp. 425–443. issn: 0168-9274.

BIBLIOGRAPHY 83

[78] J. J. W. van der Vegt and J. J. Sudirham. “A space-time discontinuous Galerkin
method for the time-dependent Oseen equations”. In: Appl. Numer. Math. 58.12 (2008),
pp. 1892–1917.

[79] J. J. W. van der Vegt and H. van der Ven. “Space-time discontinuous Galerkin finite
element method with dynamic grid motion for inviscid compressible flows. I. General
formulation”. In: J. Comput. Phys. 182.2 (2002), pp. 546–585. issn: 0021-9991.

[80] H Van der Ven and JJW Van der Vegt. “Space–time discontinuous Galerkin finite
element method with dynamic grid motion for inviscid compressible flows: II. Efficient
flux quadrature”. In: Computer methods in applied mechanics and engineering 191.41
(2002), pp. 4747–4780.

[81] Wolfgang A Wall et al. “Large deformation fluid-structure interaction–advances in
ALE methods and new fixed grid approaches”. In: Fluid-structure interaction. Springer,
2006, pp. 195–232.

[82] Decheng Wan and Stefan Turek. “Fictitious boundary and moving mesh methods
for the numerical simulation of rigid particulate flows”. In: Journal of Computational
Physics 222.1 (2007), pp. 28–56.

[83] Hongwu Wang and Ted Belytschko. “Fluid–structure interaction by the discontinuous-
Galerkin method for large deformations”. In: International Journal for Numerical
Methods in Engineering 77.1 (2009), pp. 30–49.

[84] Luming Wang and Per-Olof Persson. “A Discontinuous Galerkin Method for the Navier-
Stokes Equations on Deforming Domains using Unstructured Moving Space-Time Meshes”.
In: 21st AIAA Computational Fluid Dynamics Conference, San Diego, California.
AIAA-2013-2833. 2013.

[85] Luming Wang and Per-Olof Persson. “A High-Order Discontinuous Galerkin Method
with Unstructured Space-Time Meshes for Domains with Large Deformations”. Under
Review.

[86] Luming Wang and Per-Olof Persson. “High-order Discontinuous Galerkin Simulations
on Moving Domains using an ALE Formulation and Local Remeshing with Projec-
tions”. In: 53rd AIAA Aerospace Sciences Meeting, Orlando, Florida. AIAA-2015-0820.
2015.

[87] Takahiro Yamada and Fumio Kikuchi. “An arbitrary Lagrangian-Eulerian finite ele-
ment method for incompressible hyperelasticity”. In: Computer Methods in Applied
Mechanics and Engineering 102.2 (1993), pp. 149–177.

[88] Dehong Zeng and C Ross Ethier. “A semi-torsional spring analogy model for updating
unstructured meshes in 3D moving domains”. In: Finite Elements in Analysis and
Design 41.11 (2005), pp. 1118–1139.

	Contents
	List of Figures
	List of Tables
	Introduction
	Prior Work
	Overview

	Governing Equations
	Compressible Navier-Stokes Equations
	Isentropic Flow
	Boundary Conditions

	Moving-Mesh Strategy
	Mesh Node Smoothing
	Local Mesh Topology Change
	Mesh Adaptivity
	The algorithm

	Space-Time Discontinuous Galerkin Methods
	Space-Time Formulation
	Numerical Scheme
	Discretization of the Euler Equations
	Discretization of the Viscosity Terms
	Newton-Krylov Solver

	Space-Time Mesh Generation for 2D Problems
	Basic Idea
	Local Triangulation of Prisms
	Diagonal Matching and the Global Algorithm

	Space-Time Mesh Generation for 3D Problems
	An Alternative Algorithm for 2D Problems
	Generalization of Prisms, Lateral Faces and Diagonals
	Extension to 3D Problems

	Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Methods with Local L2 Projections
	Arbitrary Lagrangian-Eulerian Formulation
	Numerical Scheme
	Discretization
	Geometric Conservation Law
	Temporal Integration

	Local L2 Projections
	Formulation
	Implementation

	Numerical Results
	Euler Vortex
	2D Case
	3D Case

	Spinning Cross
	Pitching Tandem Airfoils
	Airfoil with a Deploying Spoiler
	Double Vertical Axis Wind Turbines
	Rotating 3D Ellipsoid

	Conclusion & Future Work
	Bibliography

