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This work presents a high-order accurate, nonlinearly stable numerical framework for
solving steady conservation laws with discontinuous solution features such as shock waves.
The method falls into the category of a shock tracking or r-adaptive method and is based
on the observation that numerical discretizations such as finite volume or discontinuous
Galerkin methods that support discontinuities along element faces can perfectly repre-
sent discontinuities and provide appropriate stabilization through approximate Riemann
solvers. The difficulty lies in aligning element faces with the unknown discontinuity. The
proposed method recasts a discretized conservation law as a PDE-constrained optimization
problem whose solution is a (curved) mesh that tracks the discontinuity and the solution of
the discrete conservation law on this mesh. The discrete state vector and nodal positions
of the high-order mesh are taken as optimization variables. The objective function is a dis-
continuity indicator that monotonically approaches a minimum as element faces approach
the shock surface in a neighborhood of radius O(h), where h is the mesh size parameter.
The discretized conservation law on a parametrized domain defines the equality constraints
for the optimization problem. A full space optimization solver is used to simultaneously
converge the state vector and mesh to their optimal values. This ensures the solution of the
discrete PDE is never required on meshes that are not aligned with discontinuities and it
increases the nonlinear stability. The method is demonstrated in one and two dimensions:
transonic flow through a nozzle and supersonic flow around a bluff body. In both cases,
the framework tracks the discontinuity closely with curved mesh elements and provides
accurate solutions on extremely coarse meshes, e.g., O(103) degrees of freedom to resolve
supersonic flow at Mach 4 in two dimensions.

I. Introduction

While it is clear that the discontinuous Galerkin (DG) and related high-order methods1–3 are getting
sufficiently mature to handle realistic problems in aerodynamics, they are still suffering from the lack of
nonlinear stability. This limits their impact on many important applications, in particular ones involving
shocks since even small oscillations in the solution can cause non-physical results.

Several approaches have been proposed for handling shocks. One simple method is to use a sensor
that identifies the elements in the shock region and reduce the order of interpolating polynomials.4,5 This
is usually combined with h-adaptivity to better resolve the shocks, and it can be quite satisfactory for
in particular steady-state problems. More sophisticated approaches include limiting, for example based on
weighted essentially non-oscillatory (WENO) concepts.1,6 Another popular approach is the artificial viscosity
technique for subcell shock capturing presented in Ref. 7 and 8. Inspired by the early artificial viscosity
methods,9 this approach has proven to be surprisingly effective in the context of high-order DG methods.
The method combines a highly selective spectral sensor with a consistently discretized artificial viscosity
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Figure 1: Mapping between reference and physical domains.

added to the equations. This smoothing of the discontinuities gives a number of important benefits, such as
fully converged steady-state solutions and smooth behavior of moving shocks.

However, shock capturing techniques such as limiting and artificial viscosity all have the drawback that
the accuracy is reduced to first order in the affected elements, which leads to a formal first order global
accuracy. While this can be partially offset with appropriate h-adaptivity, in particular using anisotropic
elements around the shock, it does pose a major limitation and makes it unclear if high-order methods can
be competitive for these applications.

In this work, we present an overview of our high-order DG method for shocks, originally introduced in
[10], which is more closely related to shock tracking and r-refinement than shock capturing. It is based on the
observations that if a (curved) face of an element is perfectly aligned with a shock, the approximate Riemann
solver will provide the appropriate stabilization and allow for high-order approximations of the solution on
both sides of the discontinuity. The difficulty with these methods is that the DG method without additional
stabilization is highly sensitive to the location of the elements, and a very small mismatch will in general
result in oscillations and prevent convergence.

Here, we instead recast the nonlinear, discrete equations as a PDE-constrained optimization problem
where the objective function is an appropriate shock indicator, the constraints are the DG discretization
of the conservation law, and the optimization variables are the discrete PDE solution and the positions of
the nodes of the mesh. The mesh deformation is handled by transforming the conservation law to a fixed
reference domain through a diffeomorphism. This means the mesh nodes will be aligned in a consistent way
with the current numerical solution (and not, e.g., the true physical position), but also that we can obtain
converged solutions using efficient constrained optimization methods. We will present all the components of
our framework, and demonstrate high-order convergence of a number of relevant shock problems in 1D and
2D.

II. Governing equations and spatial discretization

Consider a general system of Nc steady, inviscid conservation laws, defined on the physical domain
Ω ⊂ Rd,

∇ · F(U) = 0 in Ω, (1)

where U(x) ∈ RNc is the solution of the system of conservation laws at x ∈ Ω ⊂ Rd and F(U) ∈ RNc×d
is the physical flux. We assume that the solution U contains discontinuities, such as shock waves, in which
case the conservation law (1) holds away from these discontinuities.

II.A. Transformed conservation law on fixed reference domain

As the goal in this work is to track discontinuities through the deformation of the computational mesh,
and therefore the physical domain, it is convenient to reformulate the conservation law on a fixed reference
domain, Ω0. Let G : Rd × RNµ → Rd be a parametrized diffeomorphism defining the map from reference to
physical domain (Figure 1), i.e.,

Ω = G(Ω0, µ), (2)
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where µ ∈ RNµ is a vector of parameters. Under the domain mapping (2), the conservation law becomes

∇ · F(U) = 0 in G(Ω0, µ). (3)

The conservation law on the physical domain Ω is transformed to a conservation law on the reference domain
Ω0 using the procedure in [11] to yield

∇X · F (u, µ) = 0 in Ω0 (4)

where ∇X denotes spatial derivatives with respect to the reference domain Ω0 with coordinates X. The
transformed state vector, u, and flux, F , take the form

u = gµU, F (u, µ) = gµF(g−1
µ u)G−Tµ (5)

where Gµ(X) = ∂
∂XG(X, µ) is the deformation gradient of the domain mapping and gµ(X) = detGµ(X)

is the Jacobian. For details regarding the derivation of the transformed equations, the reader is referred to
[11].

II.B. Discontinuous Galerkin discretization of transformed conservation law

A standard nodal discontinuous Galerkin method is used to discretize the conservation law (1). Let Eh,p
represent a discretization of the domain Ω0 into non-overlapping, potentially curved, computational elements,
where h is a mesh element size parameter and p is the polynomial order associated with the curved elements.
The element-wise weak form of the governing equation in (4) results from multiplication by a test function
ψ, integration over a single element K ∈ Eh,p, and application of the divergence theorem∫

K

∇X · F (u, µ) · ψ dV =

∫
∂K

ψ · F (u, µ)N dA−
∫
K

F (u, µ) : ∇Xψ dV = 0, (6)

where N is the outward normal to the surface ∂K. The global weak form, upon which DG methods are
built, arises from the summation of the local residuals over all elements in Eh,p∑

K∈Eh,p

∫
∂K

ψ · F (u, µ)N dA−
∫

Ω0

F (u, µ) : ∇Xψ dV = 0. (7)

The numerical flux, F ∗, is introduced in the first term of (7)∑
K∈Eh,p

∫
∂K

ψ · F ∗(u, µ, N) dA−
∫

Ω0

F (u, µ) : ∇Xψ dV = 0 (8)

to ensure the flux is single-valued along ∂K where u is multi-valued. In the discontinuity-tracking setting,
the inter-element jumps will not tend to zero under refinement, which means the numerical flux must be
consistent with the governing equation at discontinuities. In this work, Roe’s method12 with the Harten-
Hyman entropy fix13 is used for the numerical fluxes at interior faces and the appropriate boundary conditions
determines the numerical fluxes on faces that intersect ∂Ω.

To establish the finite-dimensional form of (8), we introduce the isoparametric finite element space of
piecewise polynomial functions associated with the mesh Eh,p:

Vh,p =
{
v ∈ [L2(Ω0)]Nc | v|K ◦ TK ∈ [P(K0)]Nc ∀K ∈ Eh,p

}
where Pp(K0) is the space of polynomial functions of degree at most p ≥ 1 on the parent element K0 and
K = TK(K0) defines a mapping from the parent element to element K ∈ Eh,p. For notational brevity, we
assume all elements map from a single parent element. Then the Galerkin weak form in (8) becomes: find
uh,p ∈ Vh,p such that for all ψh,p ∈ Vh,p∑

K∈Eh,p

∫
∂K

ψh,p · F ∗(uh,p, µ, N) dA−
∫

Ω0

F (uh,p, µ) : ∇Xψh,p dV = 0. (9)
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To obtain the discrete form of (9), we introduce a basis {ϕi}
Np
i=1 for Pp(K0). While this can be any valid

basis, a flexibility afford by the DG framework, it is convenient for the proposed shock tracking method

to work with a nodal basis. Define a set of nodes {ξj}
Np
j=1 within the parent element K0 and let ϕi be the

Lagrange polynomial associated with nodes ξi over element K0 with the property ϕi(ξj) = δij . For brevity, we
introduce notation for the Lagrange basis defined on the reference element K ∈ Eh,p: ϕKi (X) = ϕi(T −1

K (X)).
The finite-dimensional solution, uh,p, in each element K ∈ Eh,p is written in terms of its discrete expansion
coefficients as

uh,p(X)|K =

Np∑
i=1

uKi ϕ
K
i (X), (10)

where uKi ∈ RNc is the solution at node i of element K. Under the isoparametric assumption, the physical
coordinates are expanded in the nodal basis as

xh,p(X)|K =

Np∑
i=1

xKi ϕ
K
i (X), (11)

where xKi ∈ Rd is the coordinate of node i of element K. From this expansion, the deformation gradient,
G, and Jacobian, g, required to define the transformed state vector and fluxes are

Gh,p(X)|K =

Np∑
i=1

xKi
∂ϕKi
∂X

(X)

gh,p(X)|K = detGh,p(X)|K .

(12)

Therefore, in the isoparametric setting, the mapping to the physical domain is completely determined from
the nodal positions of each element xKi . To ensure the domain mapping is continuous, we only allow the nodal
positions of the continuous, high-order mesh, denoted x ∈ RNx , to vary. This ensures nodes co-located in
the reference domain will be co-located in the physical domain. With this notation, the continuous domain
mapping is parametrized by µ = x, i.e., Ω = G(Ω0, x). The remainder of the document will use x to
parametrize the domain deformation instead of µ. Finally, the integrals in (9) are evaluated using high-order
Gaussian quadrature rules to yield the discrete form of the governing equations

r(u, x) = 0, (13)

where u ∈ RNu (Nu = NpNc|Eh,p|) is the solution vector comprised of the coefficients uKi for all elements.

III. High-order shock tracking via optimization-based r-adaptivity

In this section, we present an optimization framework designed to align discontinuous features in a
finite-dimensional solution basis with features in the solution itself. In the discretization setting outlined
in Section II, this amounts to aligning element faces, where discontinuities are supported, with discontinu-
ities in the solution. With the discontinuous features tracked with element faces, very coarse high-order
discretizations are effectively used to resolve the smooth solution throughout the domain. To align ele-
ment faces with solution discontinuities, an optimization-based r-adaptivity framework is developed with
an appropriate parametrization of the nodal positions of the continuous, high-order mesh, a shock tracking
objective function, the discretized conservation law as the nonlinear equality constraints, and a full space
PDE-constrained optimization solver to robustly solve the optimization problem. An overview of each of
these components is provided in the remainder of this section; see [10] for a detailed description.

III.A. Optimization formulation for r-adaptivity

The goal of the r-adaptivity framework is to align faces of the DG mesh with the discontinuity. Since the
discontinuity is not known a-priori, a mesh cannot be constructed to explicitly conform to the shock. Instead,
we consider a parametrization of the nodal positions of the continuous, high-order mesh x = x(φ) = A(φ),
where φ ∈ RNφ is a vector of parameters. In the most general case, each degree of freedom of node of the
mesh is an optimization parameter and A(φ) = φ is the identity map; however, the mapping A(φ) can be
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used to build any a-priori knowledge of the shock location into the parametrization or steps that ensure the
resulting mesh is well-conditioned, e.g., smoothing.

With this parametrization, the problem of solving the discrete PDE on a fixed mesh, i.e., r(u; x) = 0
where x is given, is replaced with the optimization problem

minimize
u,φ

f(u; x(φ))

subject to r(u; x(φ)) = 0,
(14)

where f(u; x) is a shock-indicating objective function. This optimization problem seeks to find the mesh
x(φ) and solution u that minimize f(u, x) while satisfying the discretized PDE. The next section discusses
our particular choice of the shock tracking objective function.

III.B. Shock tracking objective function

An effective objective function for the optimization formulation in (14) must monotonically approach a
(local) minimum in the feasible set as x → x∗, where x∗ is any mesh that aligns with the shock. While
residual-based error indicators are popular in the mesh adaptation community, we have observed that these
fail to monotonically approach a local minima. The indicator used in this work is the integrated deviation
of the solution from the mean in each element:

fshk(u, x) = h−2
0

∑
K∈Eh,p

∫
G(K,x)

∥∥uh,p − ūKh,p∥∥2

W
dV (15)

where the dependence of the finite dimensional solution uh,p on the discrete representation is implied, ūKh,p
is the mean value of uh,p over element K, W ∈ RNc×Nc is the symmetric positive semi-definite matrix that
defines the local semi-norm, and h0 is the length scale of the mesh Eh,p

ūKh,p =
1

|G(K, x)|

∫
G(K,x)

uh,p dV, |G(K, x)| =
∫
G(K,x)

dV, h0 =

(
1

|Eh,p|

∫
Ω0

dV

)1/d

. (16)

The h−2
0 factor ensures the indicator scales as O(1) instead of O(h2). In this work, we only consider

W = eT1 e1 (density component). While this objective does not provably satisfy the required objective
function conditions, it seems to satisfy them in practice; see [10] for additional detail.

The discontinuity indicator in (15) is not well-suited as the objective function in the discontinuity-tracking
optimization setting (14) in its current form because it is agnostic to a poor quality or inverted mesh that
may arise from certain choices of x. Therefore we construct the objective function as a weighted combination
of (15) and a function fmsh : RNx → R that penalizes mesh distortion

f(u, x) = fshk(u, x) + αfmsh(x). (17)

In this work, we use the following mesh distortion measures

fmsh(x) =


h0

∑
K∈Eh,p

∣∣∣∣ h0

|G(K, x)|
− 1

∣∣∣∣ d = 1

hd0
∑

K∈Eh,p

1

|G(K, x)

∫
G(K,x)

(
‖Gh,p‖2F

(detGh,p)
2/d
+

)r
otherwise,

(18)

where the hd0 factor is included to ensure the fmsh scales independently of h and r = 2 is used in this work.
The reader is referred to [10] for additional detail on the proposed objective function and a comparison with
existing discontinuity indicators.

III.C. Full space optimization solver

Two standard approaches exist for solving PDE-constrained optimization problems such as the one in (14).
The first, and most common, is known as the reduced space approach explicitly enforces the PDE constraint
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at all times by defining u(x) as the solution of r(u, x) = 0, which reduces (14) to an unconstrained
optimization problem

minimize
φ

f(u(x(φ)), x(φ)). (19)

This approach cannot be used in this setting as r(u, x) = 0 can only be solved if the mesh is perfectly aligned
with the shock or enough viscosity is added to stabilize the solution. Since the mesh will not align with the
shock until convergence of the optimization procedure, this approach can only be used if sufficient viscosity
(or simply Laplacian-based diffusion) is added during intermediate iterations. The second approach, called
the full space approach, treats the u and φ as independent optimization variables, as suggested in (14), and
converge them simultaneously to their optimal values. This implies the solution of the PDE is never required
away from a discontinuity-aligned mesh x∗ and overcomes the fundamental difficulty with the reduced space
formulation. Therefore, the full space approach is the preferred method since the reduced space solver is
extremely sensitivity to a heuristic, viscosity-based homotopy strategy. See [10] for further detail on the
trade-off between the full and reduced space solvers.

IV. Applications

IV.A. Transonic, inviscid flow through nozzle

The proposed high-order shock tracking framework is applied to the nonlinear, quasi-one-dimensional Euler
equations that model inviscid, compressible flow in a variable-area stream tube A(x)

∂

∂x
(ρu) = − 1

A

dA

dx
ρu, (20)

∂

∂x
(ρu2 + p) = − 1

A

dA

dx
ρu2, (21)

∂

∂x
([ρE + p]u) = − 1

A

dA

dx
(ρE + p)u (22)

where ρ is the fluid density, u is the fluid velocity, p is the thermodynamic pressure, and

ρE = ρe+
1

2
ρu2 (23)

is the total energy. The pressure is related to ρE by the equation of state

p = (γ − 1)

(
ρE − 1

2
ρu2

)
(24)

for a perfect gas with ration of specific heats γ = 1.4. The domain is taken as Ω = (0, 1) and the nozzle
profile takes the form

A(x) =

1− (1− T ) cos(π(x− 0.5)/0.8)2 x ∈ [0.1, 0.9]

1 otherwise
(25)

where T = 0.6 is the height of the nozzle throat. The boundary conditions weakly impose the farfield
conditions ρi = 1.0, ui = 1.0, Mi = 0.40 at the inflow and ρo = 1.0, uo = 1.0, Mo = 0.42 at the outflow
using the approximate Riemann solver. The reference solution, given in Figure 2, was computed on a highly
adapted mesh near the discontinuity consisting of over 8000 linear (p = 1) elements. The test case was
chosen such that the shock is sufficiently weak that the oscillations did not cause the nonlinear iterations to
diverge or encounter negative density or pressure values.

The proposed discontinuity-tracking framework is applied to solve the quasi-1d Euler equations using
very few high-order elements. The full space optimization approach discussed in Section III.C is used and
SNOPT [14] is used as the nonlinear optimizer. The results are shown in Figure 3, where only 4 quadratic
(p = 2), cubic (p = 3), and quartic (p = 4) elements are used. While the p = 2 and p = 3 cases are somewhat
underresolved, the p = 4 case matches the reference solution very closely.
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Figure 2: Reference solution with 300 p = 1 elements.
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Figure 3: The solution of the quasi-1d Euler equations using the proposed high-order DG shock tracking
framework using the full space optimization approach with SNOPT as the chosen optimizer. Only 4 quadratic
(left), cubic (middle), and quartic (right) are used. The vertical lines ( ) indicate the element boundaries
with the corresponding solution in black ( ) and the reference solution using over 8000 linear elements in
blue ( ).
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IV.B. Supersonic flow around two-dimensional bluff body

In this section, we study the performance of the proposed discontinuity tracking framework on two-dimensional
inviscid, supersonic flow around a rounded square. The geometry of the domain and reference mesh with
|Eh,p| = 102 elements are shown in Figures 4 for polynomial orders p = 1, p = 2, and p = 3. The flow is

Figure 4: Reference domain and mesh with |Eh,p| = 102 elements and polynomial orders p = 1 (left),
p = 2 (center), p = 3 (right). The blue circles identify parametrized nodes, i.e., nodal positions that whose
displacements compose the optimization variables φ. Only the displacement normal to the boundary are
taken as optimization variables for the two parametrized nodes that lie on boundaries.

modeled by the two-dimensional steady Euler equations

∂

∂xi
(ρui) = 0,

∂

∂xi
(ρuiuj + p) = 0 for i = 1, 2,

∂

∂xi
(uj(ρE + p)) = 0,

(26)

where ρ is the fluid density, u1, u2 are the velocity components, and E is the total energy. For an ideal gas,
the pressure p has the form

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (27)

where γ is the adiabatic gas constant. The discretization of the governing equations proceed according to
the formulation in Section II and Roe’s approximate Riemann solver corresponding to the time-dependent
version of (26) is used for the numerical flux. All farfield and inviscid wall boundary conditions are weakly
imposed using the Roe solver. The incoming flow is taken as supersonic at Mach 4.

For simplicity, we use a simple mesh parametrization that does not include the position of all the nodes
of the continuous high-order mesh, but rather a well-chosen subset of these nodes. The remainder of the
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nodes are determined through a linear operator that incorporates mesh smoothing. In this work, we use
linear elasticity with prescribed displacements at the parametrized nodes and in the normal direction along
domain boundaries. The free degrees of are shown in Figure 4 and lead to Nφ = 12 for p = 1, Nφ = 24 for
p = 2, and Nφ = 36 for p = 3.

As a non-convex optimization problem underlies the discontinuity-tracking framework, the performance
of the full space solver relies on a quality initial guess. In [10], we used the reference mesh as the initial
guess for φ and the solution of the conservation law on this non-aligned mesh, with sufficient viscosity added
such that it can be computed, as the initial guess for u for the p = 1 case. However, in the present case
the shock is quite strong given the large Mach number (M = 4) and the viscosity required to stabilize the
solution on this mesh provides a meaningless initial guess. Therefore, we use homotopy in the Mach number
to provide a reasonable starting guess for the M = 4 problem at polynomial order p = 1. That is, we solve
the discontinuity-tracking problem at M = 3 and use the (u, φ) solution as the initial guess for the M = 4
case. Similarly, the M = 3 problem is initialized from the solution of the M = 2.5 problem. The shock
in the M = 2.5 case is sufficiently weak that the viscosity solution provides a reasonable starting guess.
Similar to [10], we use homotopy in p to initialize the discontinuity-tracking problems for polynomial orders
beyond 1. That is, the discontinuity-tracking solution at polynomial order p is used to initialize the solver
at polynomial order p + 1. This requires a simple injection operation to transfer the solution u and mesh
x(φ) to a higher polynomial degree.

The result of the discontinuity-tracking method using the above initialization strategy and the reference
domain in Figure 4 is provided in Figure 5. For all polynomial orders, the shock is tracked as well as possible
given the resolution limit of the mesh and all elements are high-quality. The solution for the p = 1 mesh is
clearly underresolved and the shock surface is faceted since the elements cannot bend in the piecewise linear
setting. The p = 2 and p = 3 meshes deliver quite accurate and smooth solutions solutions away from the
shock and track the smooth, curved shock surface very well.

The total enthalpy, H = (ρE+p)/ρ, is constant in steady inviscid flow and therefore we use the following
error metric to quantify the performance of the discontinuity tracking framework without requiring a reference
solution

eH =

√∫
Ω

(H −H0)2 dv∫
Ω
dv

, (28)

where H0 is the farfield enthalpy. Table 1 shows the discontinuity-tracking framework provides accurate
solutions on discretizations with very few degrees of freedom, e.g., Nu ∼ O(103) with errors on the order of
eH ∼ O(10−3).

Polynomial order (p) Number of degrees of freedom (Nu) Enthalpy error (eH)

1 1224 1.517× 10−3

2 2448 5.745× 10−4

3 4080 4.408× 10−4

Table 1: Discontinuity-tracking performance summary, including the number of degrees of freedom and the
enthalpy error for the reference mesh in Figure 4 with 102 elements and polynomials orders p = 1, p = 2,
p = 3.

V. Conclusion

This document presented a high-order accurate, nonlinearly stable discontinuity-tracking framework for
solving conservation laws with discontinuous solution features. The method leverages the discontinuities
between elements present in the finite-dimensional solution basis in the context of a discontinuous Galerkin
discretization to track discontinuities in the underlying solution. The approximate Riemann solvers en-
sure the numerical fluxes are consistent with the governing equations and provide appropriate stabilization
through upwinding. Central to the tracking framework is a PDE-constrained optimization formulation of
the discrete conservation law whose objective pushes the mesh to align with discontinuities and constraints
ensure the discrete conservation law is satisfied. The proposed objective function not only attains its mini-
mum when the mesh is aligned with discontinuities, but also approaches the minimum monotonically, which
is critical for a gradient-based optimizer to locate it. The optimization problem is solved using a full space
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Figure 5: Solution of two-dimensional Euler equations (density) with supersonic inflow M = 4 using
discontinuity-tracking framework with polynomial orders p = 1 (left), p = 2 (center), p = 3 (right). The
deformed mesh provided by the tracking framework is included in the top row to show the high-quality
curved elements that track the shock location. The mesh is not included in the bottom row to clearly show
the solution features away from the shock.
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optimization solver whereby the PDE solution and mesh simultaneously converge to their optimal values,
ensuring the discrete PDE solution is never required on non-aligned meshes. The merit of the method is
established on a one and two dimensional test problem where accurate solutions were obtained on coarse
meshes. For the two dimensional problem, the mesh curved to define the shock surface and a highly accurate
solution to a supersonic, Mach 4 problem was obtained with only 102 cubic elements.

A number of important research directions must be investigated if the proposed framework is to be a
viable approach for resolving problems with discontinuous solutions. First, there is considerable structure in
the optimization problem (14), e.g., only equality constraints, partition of optimization variables in u and
φ, invertible constraint Jacobian with respect to u, efficient sparse parallel solvers available for operations
involving r and its derivatives, that black-box optimizers cannot leverage. Therefore we intend to develop a
solver that can leverage this structure and incorporate well-known homotopy strategies into the constraint
since r(u, x) = 0 is difficult to solve for high-speed flows that contain discontinuities. There is also potential
to speed up the proposed solver and improve the quality of the resulting mesh by incorporating local topology
changes at discrete times during the optimization solve. Additionally, testing on complex flows in two- and
three-dimensions is required.
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