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This work extends the method developed in [1, 2] that uses a high-order discontinuous
Galerkin discretization and optimization-based r-adaptivity to track discontinuous solutions
of conservation lawswith the underlyingmesh andprovide high-order accurate approximations
without additional stabilization techniques, e.g., limiting or artificial viscosity, to problems with
shocks attached to curved boundaries. Central to the framework is an optimization problem
whose solution is a shock-alignedmesh and the corresponding DG approximation to the flow; in
this sense, the framework is an implicit tracking method, which distinguishes it from methods
that aim to explicitly mesh the shock surface. The optimization problem is solved using a
sequential quadratic programming method that simultaneously converges the mesh and DG
solution, which is critical to avoids nonlinear stability issues that would come from computing
a DG solution on a unconverged (non-aligned) mesh. In the case of a shock attached to a
curved boundary, the mesh coordinates are parametrized in terms of a reduced set of degrees
of freedom and a mapping that ensures boundary nodes always conform to the appropriate
boundary. We use the proposed method to solve for the inviscid, transonic flow around a
NACA0012 airfoil. The framework generates a mesh that successfully tracks the attached
shock and provides an accurate flow approximation on a relatively coarse mesh.

I. Introduction

High-order methods, such as the discontinuous Galerkin (DG) method [3, 4], are widely believed to be superior
to traditional low-order schemes for simulation of turbulent flow problems. However, in the presence of shocks

and other discontinuities, the lack of nonlinear stability proves to be a fundamental problem. Many solutions have
been proposed, but new advances are still required to make these new schemes sufficiently robust and competitive for
real-world problems.

Most of the techniques for addressing shocks are based on so-called shock capturing, that is, the numerical
discretization somehow incorporates the discontinuities independently of the computational grid. One simple method is
to use a sensor that identifies the mesh elements that contain shocks, and reduce their polynomial degrees [5, 6]. For
the DG method, this essentially leads to a standard cell-centered finite volume scheme locally, which is well-known
to handle shocks robustly. Related more sophisticated approaches include limiting, such as the weighted essentially
non-oscillatory (WENO) schemes [7–9]. For high-order methods, artificial viscosity has also proven to be highly
competitive, since it can smoothly resolve the jumps in the solution without introducing additional discontinuities
between the elements [10]. The main problem with all these approaches is that they reduce to first order accuracy in the
affected elements, which translates into a globally first order accurate scheme. This can be remedied by using local
mesh refinement around the shock (h-adaptivity) [11], although the anisotropic elements that are required for efficiency
are difficult to generate, and it usually generates excessively fine elements around the shock.

An alternative approach is shock tracking or shock fitting, where the computational mesh is moved such that their
faces are aligned with the discontinuities in the solution [12–23]. This is very natural in the setting of a DG method,
since the numerical scheme already incorporates jumps between the elements, and the approximate Riemann solvers
employed on the element faces handle the discontinuities correctly. However, it is a difficult meshing problem since it
essentially requires generating a fitted mesh to the (unknown) shock surface. Also, in the early approaches to shock
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fitting, it was applied to low-order schemes where the relative advantage over shock capturing is smaller than for
high-order methods. Because of this, shock tracking is largely not used in practical CFD today.

In [1], we proposed a shock tracking approach for high-order DG schemes, based on an optimization problem whose
solution is a shock-aligned mesh and the solution of the true DG discretization on this mesh. This leads to an implicit
approach to tracking, rather than explicitly trying to mesh the shock surfaces. The method is truly high-order accurate,
since the solution is smooth within each element, and very accurate solutions were obtained on coarse meshes. Further
improvements in [2] increased the robustness of the approach. The key features of the method include an r-adaptive
PDE-constrained optimization formulation, a solver that simultaneously converges the DG solution and the mesh to
their optimal values and avoids nonlinear stability issues, as well as practical details such as mesh operations to remove
skewed elements and initialization of the solution from the p “ 0 DG solution. A related approach in [24, 25] uses a
DG-like discretization with unconventional numerical fluxes and Rankine–Hugoniot conditions that are enforced in a
minimum-residual sense.

In this work, we provide an overview of the method and apply it to the transonic flow over an airfoil. Since the
shock is attached, this requires sliding nodes along the curved boundaries and re-parametrization of the optimization
problem to incorporate the boundary constraints. We achieve this by introducing mappings, whose Jacobians are derived
analytically and used in the optimization solver. We apply the method on the standard test case of transonic flow around
a NACA0012 airfoil, and demonstrate that we can accurately represent the shock using very coarse mesh elements.

II. Governing equations and high-order discontinuous Galerkin discretization
Consider a general system of M inviscid conservation laws, defined on the physical domain Ω Ă Rd ,

∇ ¨ FpUq “ 0 in Ω
FpUq ¨ n “ qpU, nq on BΩ,

(1)

where U : Ω Ñ RM is the solution of the system of conservation laws, F : RM Ñ RMˆd is the physical flux,
n : BΩ Ñ Rd is the outward unit normal, q : RM ˆ Rd Ñ RM is the value of the flux in the normal direction on
the boundary (boundary condition), and ∇ B pBx1, . . . , Bxd q is the gradient operator in the physical domain such that
∇wpxq “

”

Bx1wpxq ¨ ¨ ¨ Bxdwpxq
ı

P RNˆd for any N vector-valued function w over Ω (wpxq P RN for x P Ω). The
formulation of the conservation law in (1) is sufficiently general to encapsulate steady conservation laws in d-dimensional
spatial domain or time-dependent conservation laws in a pd ´ 1q-dimensional domain, i.e., a d-dimensional space-time
domain. In general, the solution Upxq may contain discontinuities, in which case, the conservation law (1) holds away
from the discontinuities and the Rankine-Hugoniot conditions [26] holds at discontinuities.

It is convenient to explicitly treat deformations to the domain of the conservation law Ω by transforming to a fixed
reference domain Ω0 Ă R

d. Suppose the physical domain can be taken as the result of a diffeomorphism applied to a
reference domain

Ω “ GpΩ0q, (2)

where Ω0 Ă R
d is a fixed reference domain and G : Rd Ñ Rd is the diffeomorphism defining the domain mapping.

The conservation law on the physical domain Ω is transformed to a conservation law on the reference domain

∇X ¨ FXpUX,Gq “ 0 in Ω0

FXpUX,Gq ¨ N “ qXpUX,G, Nq on BΩ0,
(3)

where ∇X B pBX1, . . . , BXd
q denotes spatial derivatives with respect to the reference domain Ω0 with coordinates X ,

UX : Ω0 Ñ R
M is the mapped state vector we define as

UX “ U ˝ G, (4)

FXpUX,Gq P R
Mˆd is the transformed flux function, and qXpUX,G, Nq P RM is the transformed boundary condition.

The unit normal in the reference and physical domain are related by

n “
gG´T N
}gG´T N}

, (5)
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where GpXq “ B
BXGpXq is the deformation gradient of the domain mapping and gpXq “ det GpXq is the Jacobian. The

transformed flux and boundary condition are

FXpUX,Gq “ gFpUqG´T , qXpUX,G, Nq “
›

›gG´T N
›

› qpU, nq; (6)

for details of the derivation, see [2].
We use a standard nodal discontinuous Galerkin method [3, 4] to discretize the transformed conservation law (3).

Let Eh,q represent a discretization of the reference domain Ω0 into non-overlapping, potentially curved, computational
elements, where h is a mesh element size parameter and q is the polynomial order associated with the curved elements.
The DG weak formulation of the transformed conservation law is

ż

BK

ψ`X ¨HXpU`X ,U
´

X , N,Gq dS ´
ż

K

FpUX,Gq : ∇XψX dV “ 0, (7)

where HXpU`X ,U
´

X , N,Gq is the numerical flux function, U`X denotes the interior trace of UX , U´X denotes the exterior
trace of UX if BK is an interior face, i.e., BK X BΩ0 “ H, otherwise U´X is taken from a boundary condition.

To establish the algebraic form of (7), we introduce a nodal bases over each element for the solution, test function,
and domain deformation. Taking the test and trial spaces to be piecewise polynomial spaces of equal degree p and the
domain deformation to lie in the same piecewise polynomial space as the mesh (degree q), we obtain the discrete DG
residual

rpu, xq “ 0, (8)
where u P RNu are the assembled coefficients of the solution UX and x P RNx are the assembled coefficients of the
domain deformation G (coordinates of the mesh in the physical domain). We also introduce an enriched discrete residual
Rpu, xq, defined as the discrete DG residual corresponding to a trial space of degree p, test space of degree p` 1, and
deformation space of degree q. Both rpu, xq and Rpu, xq will be used to define the tracking optimization problem.

III. Shock tracking framework via optimization-based r-refinement
In this section, we introduce the main contribution of this work: an r-adaptivity framework that recasts the discrete

conservation law (8) as a PDE-constrained optimization problem over the discrete solution and mesh that aims to align
features in the solution basis with features in the solution itself. In the present setting, this amounts to aligning element
faces with discontinuities. The method builds upon our previous work [1, 2], where we demonstrated that high-order
methods are capable of approximating discontinuous solutions of PDEs using extremely coarse discretizations provided
the discontinuities are tracked.

A. PDE-constrained optimization formulation
Following our work in [1, 2], we formulate the problem of tracking discontinuities as a PDE-constrained optimization

problemover the PDE state and coordinates of themesh nodes thatminimizes someobjective function f : RNuˆRNx Ñ R
while enforcing the DG discretization of the conservation law

minimize
uPRNu ,xPRNx

f pu, xq

subject to rpu, xq “ 0.
(9)

The objective function is constructed such that the solution of the PDE-constrained optimization problem is a mesh that
aligns with discontinuities in the solution. The optimization-based tracking method directly inherits the benefits of
standard DG methods, i.e., high-order accuracy and conservation, due to the constraint that exactly enforces the DG
discretization. The optimization formulation in (9) will provide nonlinear stability without using limiting or artificial
viscosity if all discontinuities are successfully tracked.

In [2], we proposed an objective function that penalizes a measure of the DG solution error using the enriched
residual. Since a piecewise polynomial solution on an aligned mesh will have much lower error than on a non-aligned
mesh, error-based indicators tend to promote alignment of the mesh with discontinuities. We use the norm of the DG
residual corresponding to an enriched test space, i.e.,

f pu, xq B
1
2
Rpu, xqTRpu, xq, (10)

where we enrich the test space using polynomials of one degree higher than the trial space, a term often found in
adjoint-based error estimation [27].
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B. Enforcement of boundary constraints
To maintain a boundary-conforming mesh, the coordinates of all mesh nodes cannot be allowed to move freely;

rather, we must add boundary constraints to ensure nodes slide along the domain boundaries. To this end, we write the
mesh node coordinates as the result of a mapping χ : RNφ Ñ RNx from the unconstrained degrees of freedom φ P RNφ

that incorporates all boundary constraints
x “ χpφq, (11)

where the specific form of the mapping depends on the domain under consideration. This constraint is incorporated into
the optimization problem (9) as:

minimize
uPRNu ,φPRNφ

f pu, χpφqq

subject to rpu, χpφqq “ 0.
(12)

For example, consider the NACA0012 airfoil and associated flow domain (Figure 1) from Section IV. We consider
four separate surfaces that nodes are permitted to slide along: the upper/lower halves of the farfield boundary and the
upper/lower surface of the airfoil. The upper and lower halves of the farfield boundary can be written as functions
ycu : p´1.5, 2.5q Ñ R and ycl : p´1.5, 2.5q Ñ R, respectively, as

ycupxq “
b

4´ px ´ 0.5q2, yclpxq “ ´
b

4´ px ´ 0.5q2. (13)

The upper and lower surfaces of the airfoil can be written as functions yau : p0, 1q Ñ R and yal : p0, 1q Ñ R,
respectively, as

yaupxq “ 0.6
`

0.2960
?

x ´ 0.126x ´ 0.3516x2 ` 0.2843x3 ´ 0.1036x4˘

yalpxq “ ´0.6
`

0.2960
?

x ´ 0.126x ´ 0.3516x2 ` 0.2843x3 ´ 0.1036x4˘ .
(14)

We ensure the reference mesh is constructed such that a node that lies precisely at the junction between any of these four
surfaces and we do not allow them to move. For this geometry, this corresponds to nodes at p´1.5, 0q, p2.5, 0q, p0, 0q,
p0, 1q.

Without loss of generality, we assume the degrees of freedom defining the mesh coordinates x are arranged as
follows

x “ pXi,Yi, Xcu,Ycu, Xcl,Ycl, Xau,Yau, Xal,Yal, X f ,Yf q, (15)
where Xi, Yi are the x- and y-coordinates of the interior nodes, i.e., not on a boundary, X f , Yf are the x- and
y-coordinates of the fixed nodes, Xcu, Ycu are the x- and y-coordinates of the nodes on the upper half of the circle,
Xcl, Ycl are the x- and y-coordinates of the nodes on the lower half of the circle, Xau, Yau are the x- and y-coordinates
of the nodes on the upper surface of the airfoil, Xal, Yal are the x- and y-coordinates of the nodes on the lower surface
of the airfoil. Then we define the free degrees of freedom as

φ “ pXi,Yi, Xcu, Xcl, Xau, Xalq (16)

and the mapping from unconstrained degrees of freedom to the mesh coordinates as

χpφ; X f ,Yf q “
`

Xi,Yi, Xcu, ycupXcuq, Xcl, yclpXclq, Xau, yaupXauq, Xal, yalpXalq, X f ,Yf

˘

. (17)

The mapping Jacobian is easily determined from (17) as

Bχ

Bφ
pφq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

I

I

I

y1cupXcuq

I

y1
cl
pXclq

I

y1aupXauq

I

y1
al
pXalq

0 0 0 0 0 0
0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (18)
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which is needed to compute the derivatives of the objective function and constraint in (12) as

B f
Bφ
pu, χpφqq “

B f
Bx
pu, χpφqq

Bχ

Bφ
pφq,

Br

Bφ
pu, χpφqq “

Br

Bx
pu, χpφqq

Bχ

Bφ
pφq (19)

that are required by the full-space optimization solver discussed in the next section.

C. Full-space optimization solver
To solve the boundary-constrained optimization problem in (12), we apply the sequential quadratic programming

method with Levenberg-Marquardt Hessian approximation and globalization with a linesearch based on a `1 merit
function introduced in [2]. Instead of using the identity matrix to regularize the Hessian approximation, the stiffness
matrix of a continuous Galerkin finite element discretization of Poisson’s equation [24] with piecewise constant
coefficients inversely proportional to the volume of each element in the reference domain [2]. The regularization
parameter is adaptively chosen using the algorithm introduced in [2] and the optimization iterations stop when the
first-order optimality conditions of (12) are satisfied up to a tolerance (10´10 for the constraint and 10´6 for the other
optimality conditions). The DG solution (u) is initialized with the p “ 0 DG solution of the governing equations on the
reference mesh [2]. To ensure elements do not become unacceptably skewed, we remove elements via edge collapses
[25] once the volume of the element drops below 20% of its original volume.

IV. Numerical experiment: Transonic flow over NACA0012 airfoil
The Euler equations govern the steady flow of an inviscid, compressible fluid through a domain Ω Ă Rd

pρvjq, j “ 0, pρvivj ` pδi jq, j “ 0, pρHviq, j “ 0 in Ω (20)

where ρ : Ωˆ p0,Tq Ñ R` is the density of the fluid, vi : Ωˆ p0,Tq Ñ R for i “ 1, . . . , d is the velocity of the fluid
in the ith coordinate direction, and E : Ω ˆ p0,Tq Ñ R` is the total energy of the fluid. The enthalpy of the fluid
H : Ωˆ p0,Tq Ñ R` is defined as

ρH “ ρE ` P, (21)

where P : Ωˆ p0,Tq Ñ R` is the pressure. For a calorically ideal fluid, the pressure and energy are related via the
ideal gas law

P “ pγ ´ 1q
´

ρE ´
ρvivi

2

¯

(22)

and the speed of sound is c “
a

γP{ρ. The density, velocity, and energy are combined into a vector of conservative
variables as

U “

»

—

–

ρ

ρv

ρE

fi

ffi

fl
(23)

and the Euler equations take the form of an inviscid conservation law (1).
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Fig. 1 Geometry and boundary conditions for the NACA0012 transonic flow test case. Boundary conditions:
slip wall ( ) and farfield (characteristic) conditions with ρ8 “ 1.4, v8 “ p0.8 cos θ, 0.8 sin θq (M8 “ 0.8 and
angle of attack θ “ 1.5˝), and p8 “ 1 ( ).

We apply the DG discretization from Section II to the Euler equations and use Roe’s flux [28] with Harten’s entropy
fix [15] as the numerical flux function. Using a mesh with only 809 elements, we apply the tracking framework to
approximate the transonic flow. Figure 2 shows the solution using p “ q “ 1 and p “ q “ 2 elements. The solution is
clearly underresolved with linear, straight-sided elements and well-resolved with quadratic elements.

V. Conclusion
In this work, we demonstrated the optimization-based, r-adaptive shock tracking framework for the high-order

approximation of transonic, inviscid flow over an airfoil (shock attached to a curved surface). The key features of the
shock tracking framework are: (1) a high-order DG discretization of the flow equations on a deformable domain and
(2) implicit tracking via optimization-based r-adaptivity, i.e., the shock-aligned mesh and corresponding flow solution
are the solution of an optimization problem constrained by the DG discretization. Nonlinear stability is achieved by
simultaneously solving for the aligned mesh and corresponding flow solution, thereby avoiding solving the DG equations
on a non-aligned mesh, which is known to be unstable in the presence of shocks. On a relatively coarse, unstructured
mesh with no knowledge of the shock location, the tracking framework found a high-order mesh that tracks the curved
shock and the corresponding DG solution.
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0.53 0.78 1.03 1.28 1.53

Fig. 2 Solution of the transonic flow past a NACA0012 airfoil at M8 “ 0.8 and angle of attack θ “ 1.5˝. On
a relatively coarse mesh with 809 elements, the tracking framework successfully locates the discontinuity and
provides an accurate solution.

7



References
[1] Zahr, M. J., and Persson, P.-O., “An optimization-based approach for high-order accurate discretization of conservation laws

with discontinuous solutions,” Journal of Computational Physics, Vol. 365, 2018, pp. 105 – 134. doi:https://doi.org/10.1016/j.
jcp.2018.03.029, URL http://www.sciencedirect.com/science/article/pii/S002199911830189X.

[2] Zahr, M. J., Shi, A., and Persson, P.-O., “Shock tracking using an optimization-based, r-adaptive, high-order discontinuous
Galerkin method,” in review, 2019.

[3] Cockburn, B., and Shu, C.-W., “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,” J. Sci.
Comput., Vol. 16, No. 3, 2001, pp. 173–261.

[4] Hesthaven, J., and Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer
Science & Business Media, 2007.

[5] Baumann, C. E., and Oden, J. T., “A discontinuous hp finite element method for the Euler and Navier-Stokes equations,” Int. J.
Numer. Methods Fluids, Vol. 31, No. 1, 1999, pp. 79–95. Tenth International Conference on Finite Elements in Fluids (Tucson,
AZ, 1998).

[6] Burbeau, A., Sagaut, P., and Bruneau, C.-H., “A problem-independent limiter for high-order Runge-Kutta discontinuous
Galerkin methods,” Journal of Computational Physics, Vol. 169, No. 1, 2001, pp. 111–150.

[7] Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. R., “Uniformly high-order accurate essentially nonoscillatory schemes.
III,” Journal of Computational Physics, Vol. 71, No. 2, 1987, pp. 231–303. URL https://doi.org/10.1016/0021-
9991(87)90031-3.

[8] Liu, X.-D., Osher, S., and Chan, T., “Weighted essentially non-oscillatory schemes,” Journal of Computational Physics, Vol.
115, No. 1, 1994, pp. 200–212. URL https://doi.org/10.1006/jcph.1994.1187.

[9] Jiang, G.-S., and Shu, C.-W., “Efficient implementation of weighted ENO schemes,” Journal of Computational Physics, Vol.
126, No. 1, 1996, pp. 202–228. URL https://doi.org/10.1006/jcph.1996.0130.

[10] Persson, P.-O., and Peraire, J., “Sub-Cell Shock Capturing for Discontinuous Galerkin Methods,” 44th AIAA Aerospace Sciences
Meeting and Exhibit, Reno, Nevada, 2006. AIAA-2006-0112.

[11] Dervieux, A., Leservoisier, D., George, P.-L., and Coudière, Y., “About theoretical and practical impact of mesh adaptation on
approximation of functions and PDE solutions,” International Journal for Numerical Methods in Fluids, Vol. 43, No. 5, 2003,
pp. 507–516. ECCOMAS Computational Fluid Dynamics Conference, Part I (Swansea, 2001).

[12] Shubin, G., Stephens, A., and Glaz, H., “Steady shock tracking and Newton’s method applied to one-dimensional duct flow,”
Journal of Computational Physics, Vol. 39, No. 2, 1981, pp. 364–374.

[13] Shubin, G., Stephens, A., Glaz, H., Wardlaw, A., and Hackerman, L., “Steady shock tracking, Newton’s method, and the
supersonic blunt body problem,” SIAM Journal on Scientific and Statistical Computing, Vol. 3, No. 2, 1982, pp. 127–144.

[14] Bell, J., Shubin, G., and Solomon, J., “Fully implicit shock tracking,” Journal of Computational Physics, Vol. 48, No. 2, 1982,
pp. 223–245.

[15] Harten, A., and Hyman, J. M., “Self adjusting grid methods for one-dimensional hyperbolic conservation laws,” Journal of
computational Physics, Vol. 50, No. 2, 1983, pp. 235–269.

[16] Van Rosendale, J., “Floating Shock Fitting via Lagrangian Adaptive Meshes,” Tech. Rep. ICASE Report No. 94-89, Institute for
Computer Applications in Science and Engineering, 1994.

[17] Trepanier, J.-Y., Paraschivoiu, M., Reggio, M., and Camarero, R., “A Conservative Shock Fitting Method on Unstructured
Grids,” Journal of Computational Physics, Vol. 126, No. 2, 1996, pp. 421 – 433. doi:https://doi.org/10.1006/jcph.1996.0147,
URL http://www.sciencedirect.com/science/article/pii/S0021999196901473.

[18] Zhong, X., “High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition,” Journal of
Computational Physics, Vol. 144, No. 2, 1998, pp. 662–709. URL https://doi.org/10.1006/jcph.1998.6010.

[19] Taghaddosi, F., Habashi, W., Guevremont, G., and Ait-Ali-Yahia, D., “An adaptive least-squares method for the compressible
Euler equations,” International Journal for Numerical Methods in Fluids, Vol. 31, No. 7, 1999, pp. 1121–1139.

8

http://www.sciencedirect.com/science/article/pii/S002199911830189X
https://doi.org/10.1016/0021-9991(87)90031-3
https://doi.org/10.1016/0021-9991(87)90031-3
https://doi.org/10.1006/jcph.1994.1187
https://doi.org/10.1006/jcph.1996.0130
http://www.sciencedirect.com/science/article/pii/S0021999196901473
https://doi.org/10.1006/jcph.1998.6010


[20] Baines, M., Leary, S., and Hubbard, M., “Multidimensional Least Squares Fluctuation Distribution Schemes with Adaptive
Mesh Movement for Steady Hyperbolic Equations,” SIAM Journal on Scientific Computing, Vol. 23, No. 5, 2002, pp. 1485–1502.
doi:10.1137/S1064827500370202, URL https://doi.org/10.1137/S1064827500370202.

[21] Roe, P., and Nishikawa, H., “Adaptive grid generation by minimizing residuals,” International Journal for Numerical Methods
in Fluids, Vol. 40, No. 1-2, 2002, pp. 121–136.

[22] Glimm, J., Li, X., Liu, Y., Xu, Z., and Zhao, N., “Conservative Front Tracking with Improved Accuracy,” SIAM Journal on
Numerical Analysis, Vol. 41, No. 5, 2003, pp. 1926–1947. doi:10.1137/S0036142901388627, URL https://doi.org/10.
1137/S0036142901388627.

[23] Palaniappan, J., Miller, S. T., and Haber, R. B., “Sub-cell shock capturing and spacetime discontinuity tracking for nonlinear
conservation laws,” International Journal for Numerical Methods in Fluids, Vol. 57, No. 9, 2008, pp. 1115–1135.

[24] Corrigan, A., Kercher, A., Kessler, D., and Wood-Thomas, D., “Convergence of the Moving Discontinuous Galerkin Method
with Interface Condition Enforcement in the Presence of an Attached Curved Shock,” AIAA Aviation 2019 Forum, 2019, p.
3207.

[25] Corrigan, A., Kercher, A., and Kessler, D., “A moving discontinuous Galerkin finite element method for flows with interfaces,”
International Journal for Numerical Methods in Fluids, Vol. 89, No. 9, 2019, pp. 362–406.

[26] Majda, A., Compressible fluid flow and systems of conservation laws in several space variables, Vol. 53, Springer Science &
Business Media, 2012.

[27] Fidkowski, K., and Darmofal, D., “Review of output-based error estimation and mesh adaptation in computational fluid
dynamics,” AIAA Journal, Vol. 49, No. 4, 2011, pp. 673–694.

[28] Roe, P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal of Computational Physics,
Vol. 43, No. 2, 1981, pp. 357–372.

9

https://doi.org/10.1137/S1064827500370202
https://doi.org/10.1137/S0036142901388627
https://doi.org/10.1137/S0036142901388627

	Introduction
	Governing equations and high-order discontinuous Galerkin discretization
	Shock tracking framework via optimization-based r-refinement
	PDE-constrained optimization formulation
	Enforcement of boundary constraints
	Full-space optimization solver

	Numerical experiment: Transonic flow over NACA0012 airfoil
	Conclusion

