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Abstract

We present new techniques for generation of unstructured meshes for geometries spec-
ified by implicit functions. An initial mesh is iteratively improved by solving for a
force equilibrium in the element edges, and the boundary nodes are projected using
the implicit geometry definition. Our algorithm generalizes to any dimension and it
typically produces meshes of very high quality. We show a simplified version of the
method in just one page of MATLAB code, and we describe how to improve and
extend our implementation.

Prior to generating the mesh we compute a mesh size function to specify the
desired size of the elements. We have developed algorithms for automatic generation
of size functions, adapted to the curvature and the feature size of the geometry. We
propose a new method for limiting the gradients in the size function by solving a
non-linear partial differential equation. We show that the solution to our gradient
limiting equation is optimal for convex geometries, and we discuss efficient methods
to solve it numerically.

The iterative nature of the algorithm makes it particularly useful for moving
meshes, and we show how to combine it with the level set method for applications in
fluid dynamics, shape optimization, and structural deformations. It is also appropri-
ate for numerical adaptation, where the previous mesh is used to represent the size
function and as the initial mesh for the refinements. Finally, we show how to generate
meshes for regions in images by using implicit representations.
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Title: Professor of Applied Mathematics

Thesis Supervisor: Gilbert Strang
Title: Professor of Mathematics
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Chapter 1

Introduction

Creating a mesh is the first step in a wide range of applications, including scientific

computing and computer graphics. An unstructured simplex mesh requires a choice of

meshpoints (vertex nodes) and a triangulation. The mesh should have small elements

to resolve the fine details of the geometry, but larger sizes where possible to reduce

the total number of nodes. Furthermore, in numerical applications we need elements

of high quality (for example triangles that are almost equilateral) to get accurate

discretizations and well conditioned linear systems.

One of the most popular meshing algorithms is the Delaunay refinement method

[53], [59], which starts from an initial triangulation and refines until the element

qualities are sufficiently high. It works in a bottom-up fashion, by meshing points,

curves, surfaces, and finally the volume. The advancing front method [48] also starts

from the boundaries, and creates mesh elements along a front moving into the domain.

Both these algorithms require geometry boundaries that are specified explicitly, by for

example a polygon in two dimensions, a triangulated surface mesh in three dimensions,

or more general parameterized boundaries such as rational Bézier curves and surfaces.

For geometries with boundaries described in an implicit form φ(x) = 0, we need

other techniques for creating well-shaped meshes. We do not have a direct repre-

sentation of the boundary, and the bottom-up approaches of Delaunay refinement

and advancing front are harder to implement. A more natural way to mesh implicit

geometries is to let the mesh generator work directly with the function φ(x). We can
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determine if a point x is inside or outside our domain from the sign of φ(x), and we

can project points to the closest boundary by using the gradient ∇φ(x).

These ideas form the basis of our mesh generator. We improve an initial mesh by

solving for equilibrium in a truss structure using piecewise linear force-displacement

relations. During the node movements, we change the mesh connectivity to improve

the element qualities, either by recomputing the Delaunay triangulation or by local

updates. At equilibrium, the mesh elements tend to be of very high quality, and the

method generalizes to higher dimensions. Our algorithm is easy to understand and

to implement, and we describe how to write a complete MATLAB version in only a

few dozen lines of code.

The desired sizes of the mesh elements are described by a mesh size function h(x),

which we use to determine the equilibrium lengths of the edges. We show how to

create size functions automatically from discretized implicit geometries. The feature

size is computed from the medial axis transform, which we detect as shocks in the

distance function. To avoid large variations in element sizes, we limit the gradients

in h(x) by numerically solving a non-linear partial differential equation, the gradient

limiting equation. This Hamilton-Jacobi equation simplifies the generation of mesh

size functions significantly, since it decouples size constraints at specific locations from

the mesh grading requirements.

We have identified many application areas for our mesh generator, based on the

iterative formulation and the implicit geometries. We can for example combine it

with the level set method to solve problems with evolving interfaces. These moving

meshes are particularly well suited for our iterative mesh generation, since at each

time step we only have to do a few additional iterations to improve the element

qualities. We use this to solve shape optimization problems and to simulate physical

phenomena with moving boundaries. A related application is mesh refinement for

numerical adaptation, where again we have good initial meshes at each adaptation

step.

Finally, we show how to mesh domains that are given in the form of an image. This

could be any image such as a photograph, a satellite image, or a three dimensional
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image from a computed tomography (CT) scan. Since the image is already an implicit

description of the domain, we work directly with this form rather than extracting

the boundaries. We use image manipulation techniques to segment and smooth the

image, and we compute the distance function using approximate projections and the

fast marching method. From this we can create mesh size functions adapted to the

geometry, and generate high-quality meshes in both two and three dimensions.

1.1 Prior Work

Many different mesh generation algorithms have been developed, and some of the

most popular ones are described in the surveys by Bern and Plassmann [4] and Owen

[46]. These methods usually work with explicit geometry representations, although

many techniques have been proposed for triangulation of implicit surfaces [7], [19],

[20], [65], [69]. Two more recent publications on mesh generation for level sets are

Gloth and Vilsmeier [27] and Molino et al [41].

Our iterative mesh generator is closely related to mesh smoothing, for example

Laplacian smoothing [23], Winslow smoothing [68], and quality optimization tech-

niques like those in the Mesquite toolkit [12]. These move the nodes to improve the

mesh, and possibly also update the mesh connectivities [25]. As far as we know,

all these techniques operate on curves, surfaces, and volumes individually, while our

method moves all the nodes simultaneously and use the implicit geometry to project

the boundary nodes. The bubble mesh technique by Shimada and Gossard [61] also

uses the idea of forces between nodes to find good node locations, which are then trian-

gulated. Our improvement technique is most similar to Laplace-Delaunay smoothing

[23] and the pliant method by Heckbert and Bossen [11], which also move nodes and

update element connectivities.

The techniques we describe for discretization and initialization of distance func-

tions are well known in the level set community, see for example the books by Sethian

[56] and Osher and Fedkiw [43]. Local mesh manipulations are used by most mesh

generators, including Delaunay refinement. The method of subdividing a regular el-
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ement to create the initial mesh is similar to the initial stage of the quadtree and

the octree mesh generation algorithms [71]. We are not aware of any other methods

to align elements with implicit internal boundaries. Heckbert and Bossen [11] and

Borouchaki et al [9], [10] studied anisotropic meshes, and generation of surface meshes

is a well studied area as mentioned above.

Prior work on mesh size functions include the work by Peraire et al on the advanc-

ing front method and background grids [48], as well as several other later contributions

[47], [73], [72], [50]. None of these methods generate mesh size functions for implicit

geometries. Skeletonization with distance functions was studied in [36], [62], [52], and

some of these claim to achieve subgrid accuracy. We are not aware of any other work

related to continuous gradient limiting. Bourochaki et al [10] used simple discrete

edge iterations to approximate the true continuous problem.

Shape optimization has been studied by Murat and Simon [42] and Pironneau

[49], among others. The idea of using the level set method for the interface motion

was used by Sethian and Wiegmann [57], Osher and Santosa, [44], Allaire et al [1],

and Wang et al [67]. Our approach of combining the level set method with finite

elements on unstructured meshes appears to be new.

There appears to be a growing interest in mesh generation for images, in particular

for medical imaging, and a few references are [13], [32], [5]. The thesis ends with a

look ahead at applications to medical images.
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Chapter 2

A Simple Mesh Generator in

MATLAB

2.1 Introduction

Mesh generators tend to be complex codes that are nearly inaccessible. They are

often just used as “black boxes”. The meshing software is difficult to integrate with

other codes – so the user gives up control. We believe that the ability to understand

and adapt a mesh generation code (as one might do with visualization, or a finite

element or finite volume code, or geometry modeling in computer graphics) is too

valuable an option to lose.

Our goal is to develop a mesh generator that can be described in a few dozen lines

of MATLAB. We could offer faster implementations, and refinements of the algorithm,

but our chief hope is that users will take this code as a starting point for their own

work. It is understood that the software cannot be fully state-of-the-art, but it can

be simple and effective and public.

An essential decision is how to represent the geometry (the shape of the region).

Our code uses a signed distance function d(x, y), negative inside the region. We show

in detail how to write the distance to the boundary for simple shapes, and how to

combine those functions for more complex objects. We also show how to compute

the distance to boundaries that are given implicitly by equations f(x, y) = 0, or by
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values of d(x, y) at a discrete set of meshpoints.

For the actual mesh generation, our iterative technique is based on the physical

analogy between a simplex mesh and a truss structure. Meshpoints are nodes of

the truss. Assuming an appropriate force-displacement function for the bars in the

truss at each iteration, we solve for equilibrium. The forces move the nodes, and

(iteratively) the Delaunay triangulation algorithm adjusts the topology (it decides

the edges). Those are the two essential steps. The resulting mesh is surprisingly well-

shaped, and Figure 2-4 shows examples. Other codes use Laplacian smoothing [23]

for mesh enhancements, usually without retriangulations. This could be regarded as

a force-based method, and related mesh generators were investigated by Bossen and

Heckbert [11]. We mention Triangle [58] as a robust and freely available Delaunay

refinement code.

The combination of distance function representation and node movements from

forces turns out to be good. The distance function quickly determines if a node is

inside or outside the region (and if it has moved outside, it is easy to determine the

closest boundary point). Thus d(x, y) is used extensively in our implementation, to

find the distance to that closest point.

Apart from being simple, it turns out that our algorithm generates meshes of

high quality. The edge lengths should be close to the relative size h(x) specified by

the user (the lengths are nearly equal when the user chooses h(x) = 1). Compared

to typical Delaunay refinement algorithms, our force equilibrium tends to give much

higher values of the mesh quality q, at least for the cases we have studied.

We begin by describing the algorithm and the equilibrium equations for the truss.

Next, we present the complete MATLAB code for the two-dimensional case, and

describe every line in detail. In Section 2.5, we create meshes for increasingly complex

geometries. Finally, we describe the n-dimensional generalization and show examples

of 3-D and 4-D meshes.
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2.2 The Algorithm

In the plane, our mesh generation algorithm is based on a simple mechanical analogy

between a triangular mesh and a 2-D truss structure, or equivalently a structure of

springs. Any set of points in the x, y-plane can be triangulated by the Delaunay

algorithm [21]. In the physical model, the edges of the triangles (the connections

between pairs of points) correspond to bars, and the points correspond to joints of

the truss. Each bar has a force-displacement relationship f(`, `0) depending on its

current length ` and its unextended length `0.

The external forces on the structure come at the boundaries. At every boundary

node, there is a reaction force acting normal to the boundary. The magnitude of this

force is just large enough to keep the node from moving outside. The positions of the

joints (these positions are our principal unknowns) are found by solving for a static

force equilibrium in the structure. The hope is that (when h(x, y) = 1) the lengths of

all the bars at equilibrium will be nearly equal, giving a well-shaped triangular mesh.

To solve for the force equilibrium, collect the x- and y-coordinates of all N mesh-

points into an N -by-2 array p:

p =
[

x y

]

(2.1)

The force vector F (p) has horizontal and vertical components at each meshpoint:

F (p) =
[

Fint,x(p) Fint,y(p)
]

+
[

Fext,x(p) Fext,y(p)
]

(2.2)

where Fint contains the internal forces from the bars, and Fext are the external forces

(reactions from the boundaries). The first column of F contains the x-components

of the forces, and the second column contains the y-components.

Note that F (p) depends on the topology of the bars connecting the joints. In the

algorithm, this structure is given by the Delaunay triangulation of the meshpoints.

The Delaunay algorithm determines non-overlapping triangles that fill the convex

hull of the input points, such that every edge is shared by at most two triangles, and
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the circumcircle of every triangle contains no other input points. In the plane, this

triangulation is known to maximize the minimum angle of all the triangles. The force

vector F (p) is not a continuous function of p, since the topology (the presence or

absence of connecting bars) is changed by Delaunay as the points move.

The system F (p) = 0 has to be solved for a set of equilibrium positions p.

This is a relatively hard problem, partly because of the discontinuity in the force

function (change of topology), and partly because of the external reaction forces at

the boundaries.

A simple approach to solve F (p) = 0 is to introduce an artificial time-dependence.

For some p(0) = p0, we consider the system of ODEs (in non-physical units!)

dp

dt
= F (p), t ≥ 0. (2.3)

If a stationary solution is found, it satisfies our system F (p) = 0. The system (2.3)

is approximated using the forward Euler method. At the discretized (artificial) time

tn = n∆t, the approximate solution pn ≈ p(tn) is updated by

pn+1 = pn + ∆tF (pn). (2.4)

When evaluating the force function, the positions pn are known and therefore also the

truss topology (triangulation of the current point-set). The external reaction forces

enter in the following way: All points that go outside the region during the update

from pn to pn+1 are moved back to the closest boundary point. This conforms to the

requirement that forces act normal to the boundary. The points can move along the

boundary, but not go outside.

There are many alternatives for the force function f(`, `0) in each bar, and several

choices have been investigated [11], [61]. The function k(`0−`) models ordinary linear

springs. Our implementation uses this linear response for the repulsive forces but it
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allows no attractive forces:

f(`, `0) =











k(`0 − `) if ` < `0,

0 if ` ≥ `0.

(2.5)

Slightly nonlinear force-functions might generate better meshes (for example with

k = (` + `0)/2`0), but the piecewise linear force turns out to give good results (k is

included to give correct units; we set k = 1). It is reasonable to require f = 0 for

` = `0. The proposed treatment of the boundaries means that no points are forced

to stay at the boundary, they are just prevented from crossing it. It is therefore

important that most of the bars give repulsive forces f > 0, to help the points spread

out across the whole geometry. This means that f(`, `0) should be positive when ` is

near the desired length, which can be achieved by choosing `0 slightly larger than the

length we actually desire (a good default in 2-D is 20%, which yields Fscale=1.2).

For uniform meshes `0 is constant. But there are many cases when it is ad-

vantageous to have different sizes in different regions. Where the geometry is more

complex, it needs to be resolved by small elements (geometrical adaptivity). The so-

lution method may require small elements close to a singularity to give good global

accuracy (adaptive solver). A uniform mesh with these small elements would require

too many nodes.

In our implementation, the desired edge length distribution is provided by the

user as an element size function h(x, y). Note that h(x, y) does not have to equal

the actual size; it gives the relative distribution over the domain. This avoids an

implicit connection with the number of nodes, which the user is not asked to specify.

For example, if h(x, y) = 1 + x in the unit square, the edge lengths close to the left

boundary (x = 0) will be about half the edge lengths close to the right boundary

(x = 1). This is true regardless of the number of points and the actual element sizes.

To find the scaling, we compute the ratio between the mesh area from the actual edge
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lengths `i and the “desired size” (from h(x, y) at the midpoints (xi, yi) of the bars):

Scaling factor =

( ∑

`2
i

∑

h(xi, yi)2

)1/2

. (2.6)

We will assume here that h(x, y) is specified by the user. It could also be created

using adaptive logic to implement the local feature size, which is roughly the distance

between the boundaries of the region (see example 5 below). For highly curved

boundaries, h(x, y) could be expressed in terms of the curvature computed from

d(x, y). An adaptive solver that estimates the error in each triangle can choose h(x, y)

to refine the mesh for good solutions.

The initial node positions p0 can be chosen in many ways. A random distribution

of the points usually works well. For meshes intended to have uniform element sizes

(and for simple geometries), good results are achieved by starting from equally spaced

points. When a non-uniform size distribution h(x, y) is desired, the convergence is

faster if the initial distribution is weighted by probabilities proportional to 1/h(x, y)2

(which is the density). Our rejection method starts with a uniform initial mesh inside

the domain, and discards points using this probability.

2.3 Implementation

The complete source code for the two-dimensional mesh generator is in Figure 2-1.

Each line is explained in detail below.

The first line specifies the calling syntax for the function distmesh2d:

function [p,t]=distmesh2d(fd,fh,h0,bbox,pfix,varargin)

This meshing function produces the following outputs:

• The node positions p. This N -by-2 array contains the x, y coordinates for each

of the N nodes.

• The triangle indices t. The row associated with each triangle has 3 integer

entries to specify node numbers in that triangle.
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function [p,t]=distmesh2d(fd,fh,h0,bbox,pfix,varargin)

dptol=.001; ttol=.1; Fscale=1.2; deltat=.2; geps=.001*h0; deps=sqrt(eps)*h0;

% 1. Create initial distribution in bounding box (equilateral triangles)
[x,y]=meshgrid(bbox(1,1):h0:bbox(2,1),bbox(1,2):h0*sqrt(3)/2:bbox(2,2));

x(2:2:end,:)=x(2:2:end,:)+h0/2; % Shift even rows
p=[x(:),y(:)]; % List of node coordinates

% 2. Remove points outside the region, apply the rejection method
p=p(feval(fd,p,varargin{:})<geps,:); % Keep only d<0 points
r0=1./feval(fh,p,varargin{:}).^2; % Probability to keep point
p=[pfix; p(rand(size(p,1),1)<r0./max(r0),:)]; % Rejection method
N=size(p,1); % Number of points N

pold=inf; % For first iteration
while 1

% 3. Retriangulation by the Delaunay algorithm
if max(sqrt(sum((p-pold).^2,2))/h0)>ttol % Any large movement?

pold=p; % Save current positions
t=delaunayn(p); % List of triangles
pmid=(p(t(:,1),:)+p(t(:,2),:)+p(t(:,3),:))/3; % Compute centroids
t=t(feval(fd,pmid,varargin{:})<-geps,:); % Keep interior triangles
% 4. Describe each bar by a unique pair of nodes
bars=[t(:,[1,2]);t(:,[1,3]);t(:,[2,3])]; % Interior bars duplicated
bars=unique(sort(bars,2),’rows’); % Bars as node pairs
% 5. Graphical output of the current mesh
trimesh(t,p(:,1),p(:,2),zeros(N,1))

view(2),axis equal,axis off,drawnow

end

% 6. Move mesh points based on bar lengths L and forces F
barvec=p(bars(:,1),:)-p(bars(:,2),:); % List of bar vectors
L=sqrt(sum(barvec.^2,2)); % L = Bar lengths
hbars=feval(fh,(p(bars(:,1),:)+p(bars(:,2),:))/2,varargin{:});

L0=hbars*Fscale*sqrt(sum(L.^2)/sum(hbars.^2)); % L0 = Desired lengths
F=max(L0-L,0); % Bar forces (scalars)
Fvec=F./L*[1,1].*barvec; % Bar forces (x,y components)
Ftot=full(sparse(bars(:,[1,1,2,2]),ones(size(F))*[1,2,1,2],[Fvec,-Fvec],N,2));

Ftot(1:size(pfix,1),:)=0; % Force = 0 at fixed points
p=p+deltat*Ftot; % Update node positions

% 7. Bring outside points back to the boundary
d=feval(fd,p,varargin{:}); ix=d>0; % Find points outside (d>0)
dgradx=(feval(fd,[p(ix,1)+deps,p(ix,2)],varargin{:})-d(ix))/deps; % Numerical
dgrady=(feval(fd,[p(ix,1),p(ix,2)+deps],varargin{:})-d(ix))/deps; % gradient
p(ix,:)=p(ix,:)-[d(ix).*dgradx,d(ix).*dgrady]; % Project back to boundary

% 8. Termination criterion: All interior nodes move less than dptol (scaled)
if max(sqrt(sum(deltat*Ftot(d<-geps,:).^2,2))/h0)<dptol, break; end

end

Figure 2-1: The complete source code for the 2-D mesh generator distmesh2d.m.
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The input arguments are as follows:

• The geometry is given as a distance function fd. This function returns the

signed distance from each node location p to the closest boundary.

• The (relative) desired edge length function h(x, y) is given as a function fh,

which returns h for all input points.

• The parameter h0 is the distance between points in the initial distribution p0.

For uniform meshes (h(x, y) = constant), the element size in the final mesh will

usually be a little larger than this input.

• The bounding box for the region is an array bbox=[xmin, ymin; xmax, ymax].

• The fixed node positions are given as an array pfix with two columns.

• Additional parameters to the functions fd and fh can be given in the last

arguments varargin (type help varargin in MATLAB for more information).

In the beginning of the code, six parameters are set. The default values seem

to work very generally, and they can for most purposes be left unmodified. The

algorithm will stop when all movements in an iteration (relative to the average bar

length) are smaller than dptol. Similarly, ttol controls how far the points can move

(relatively) before a retriangulation by Delaunay.

The “internal pressure” is controlled by Fscale. The time step in Euler’s method

(2.4) is deltat, and geps is the tolerance in the geometry evaluations. The square

root deps of the machine tolerance is the ∆x in the numerical differentiation of the

distance function. This is optimal for one-sided first-differences. These numbers geps

and deps are scaled with the element size, in case someone were to mesh an atom or

a galaxy in meter units.

Now we describe steps 1 to 8 in the distmesh2d algorithm, as illustrated in Fig-

ure 2-2.

1. The first step creates a uniform distribution of nodes within the bounding box

of the geometry, corresponding to equilateral triangles:
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1−2: Distribute points 3: Triangulate  4−7: Force equilibrium

Figure 2-2: The generation of a non-uniform triangular mesh.

[x,y]=meshgrid(bbox(1,1):h0:bbox(2,1),bbox(1,2):h0*sqrt(3)/2:bbox(2,2));

x(2:2:end,:)=x(2:2:end,:)+h0/2; % Shift even rows

p=[x(:),y(:)]; % List of node coordinates

The meshgrid function generates a rectangular grid, given as two vectors x and

y of node coordinates. Initially the distances are
√

3h0/2 in the y-direction. By

shifting every second row h0/2 to the right, all points will be a distance h0 from

their closest neighbors. The coordinates are stored in the N -by-2 array p.

2. The next step removes all nodes outside the desired geometry:

p=p(feval(fd,p,varargin{:})<geps,:); % Keep only d<0 points

feval calls the distance function fd, with the node positions p and the addi-

tional arguments varargin as inputs. The result is a column vector of distances

from the nodes to the geometry boundary. Only the interior points with neg-

ative distances (allowing a tolerance geps) are kept. Then we evaluate h(x, y)

at each node and reject points with a probability proportional to 1/h(x, y)2:

r0=1./feval(fh,p,varargin{:}).^2; % Probability to keep point

p=[pfix; p(rand(size(p,1),1)<r0./max(r0),:)]; % Rejection method

N=size(p,1); % Number of points N

The user’s array of fixed nodes is placed in the first rows of p.

3. Now the code enters the main loop, where the location of the N points is

iteratively improved. Initialize the variable pold for the first iteration, and

start the loop (the termination criterion comes later):
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pold=inf; % For first iteration

while 1

...

end

Before evaluating the force function, a Delaunay triangulation determines the

topology of the truss. Normally this is done for p0, and also every time the

points move, in order to maintain a correct topology. To save computing time,

an approximate heuristic calls for a retriangulation when the maximum displace-

ment since the last triangulation is larger than ttol (relative to the approximate

element size `0):

if max(sqrt(sum((p-pold).^2,2))/h0)>ttol % Any large movement?

pold=p; % Save current positions

t=delaunayn(p); % List of triangles

pmid=(p(t(:,1),:)+p(t(:,2),:)+p(t(:,3),:))/3; % Conpute centroids

t=t(feval(fd,pmid,varargin{:})<-geps,:); % Keep interior triangles

...

end

The node locations after retriangulation are stored in pold, and every iteration

compares the current locations p with pold. The MATLAB delaunayn function

generates a triangulation t of the convex hull of the point set, and triangles

outside the geometry have to be removed. We use a simple solution here – if

the centroid of a triangle has d > 0, that triangle is removed. This technique

is not entirely robust, but it works fine in many cases, and it is very simple to

implement.

4. The list of triangles t is an array with 3 columns. Each row represents a triangle

by three integer indices (in no particular order). In creating a list of edges, each

triangle contributes three node pairs. Since most pairs will appear twice (the

edges are in two triangles), duplicates have to be removed:

bars=[t(:,[1,2]);t(:,[1,3]);t(:,[2,3])]; % Interior bars duplicated

bars=unique(sort(bars,2),’rows’); % Bars as node pairs

5. The next two lines give graphical output after each retriangulation. (They

can be moved out of the if-statement to get more frequent output.) See the

MATLAB help texts for details about these functions:
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trimesh(t,p(:,1),p(:,2),zeros(N,1))

view(2),axis equal,axis off,drawnow

6. Each bar is a two-component vector in barvec; its length is in L.

barvec=p(bars(:,1),:)-p(bars(:,2),:); % List of bar vectors

L=sqrt(sum(barvec.^2,2)); % L = Bar lengths

The desired lengths L0 come from evaluating h(x, y) at the midpoint of each

bar. We multiply by the scaling factor in (2.6) and the fixed factor Fscale, to

ensure that most bars give repulsive forces f > 0 in F.

hbars=feval(fh,(p(bars(:,1),:)+p(bars(:,2),:))/2,varargin{:});

L0=hbars*Fscale*sqrt(sum(L.^2)/sum(hbars.^2)); % L0 = Desired lengths

F=max(L0-L,0); % Bar forces (scalars)

The actual update of the node positions p is in the next block of code. The

force resultant Ftot is the sum of force vectors in Fvec, from all bars meeting

at a node. A stretching force has positive sign, and its direction is given by

the two-component vector in bars. The sparse command is used (even though

Ftot is immediately converted to a dense array!), because of the nice summation

property for duplicated indices.

Fvec=F./L*[1,1].*barvec; % Bar forces (x,y comp.)

Ftot=full(sparse(bars(:,[1,1,2,2]),ones(size(F))*[1,2,1,2],[Fvec,-Fvec],N,2));

Ftot(1:size(pfix,1),:)=0; % Force = 0 at fixed points

p=p+deltat*Ftot; % Update node positions

Note that Ftot for the fixed nodes is set to zero. Their coordinates are un-

changed in p.

7. If a point ends up outside the geometry after the update of p, it is moved

back to the closest point on the boundary (using the distance function). This

corresponds to a reaction force normal to the boundary. Points are allowed

to move tangentially along the boundary. The gradient of d(x, y) gives the

(negative) direction to the closest boundary point, and it comes from numerical

differentiation:
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d=feval(fd,p,varargin{:}); ix=d>0; % Find points outside (d>0)

dgradx=(feval(fd,[p(ix,1)+deps,p(ix,2)],varargin{:})-d(ix))/deps; % Num.

dgrady=(feval(fd,[p(ix,1),p(ix,2)+deps],varargin{:})-d(ix))/deps; % gradient

p(ix,:)=p(ix,:)-[d(ix).*dgradx,d(ix).*dgrady]; % Project back to boundary

8. Finally, the termination criterion is based on the maximum node movement in

the current iteration (excluding the boundary points):

if max(sqrt(sum(deltat*Ftot(d<-geps,:).^2,2))/h0)<dptol, break; end

This criterion is sometimes too tight, and a high-quality mesh is often achieved

long before termination. In these cases, the program can be interrupted manu-

ally, or other tests can be used. One simple but efficient test is to compute all

the element qualities (see below), and terminate if the smallest quality is large

enough.

2.4 Special Distance Functions

The function distmesh2d is everything that is needed to mesh a region specified by

the distance d(x, y) to the boundary. While it is easy to create distance functions for

some simple geometries, it is convenient to define some short help functions (Figure 2-

3) for more complex geometries.

The output from dcircle is the (signed) distance from p to the circle with center

xc,yc and radius r. For the rectangle, we take drectangle as the minimum distance

to the four boundary lines (each extended to infinity, and with the desired negative

sign inside the rectangle). This is not the correct distance to the four external regions

whose nearest points are corners of the rectangle. Our function avoids square roots

from distances to corner points, and no meshpoints end up in these four regions when

the corner points are fixed (by pfix).

The functions dunion, ddiff, and dintersect combine two geometries. They use

the simplification just mentioned for rectangles, a max or min that ignores “closest

corners”. We use separate projections to the regions A and B, at distances dA(x, y)
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and dB(x, y):

Union : dA∪B(x, y) = min(dA(x, y), dB(x, y)) (2.7)

Difference : dA\B(x, y) = max(dA(x, y),−dB(x, y)) (2.8)

Intersection : dA∩B(x, y) = max(dA(x, y), dB(x, y)) (2.9)

Variants of these can be used to generate blending surfaces for smooth intersections

between two surfaces [70]. Finally, pshift and protate operate on the node array

p, to translate or rotate the coordinates.

The distance function may also be provided in a discretized form, for example by

values on a Cartesian grid. This is common in level set applications [45], where partial

differential equations efficiently model geometries with moving boundaries. Signed

distance functions are created from arbitrary implicit functions using the reinitializa-

tion method [64]. We can easily mesh these discretized domains by creating d(x, y)

from interpolation. The functions dmatrix and hmatrix in Figure 2-3 use interp2 to

create d(x, y) and h(x, y), and huniform quickly implements the choice h(x, y) = 1.

Finally, we describe how to generate a distance function (with |gradient| = 1)

when the boundary is the zero level set of a given f(x, y). The results are easily

generalized to any dimension. For each node p0 = (x0, y0), we need the closest point

P on that zero level set – which means that f(P ) = 0 and P − p0 is parallel to the

gradient (fx, fy) at P :

L(P ) =





f(x, y)

(x− x0)fy − (y − y0)fx



 = 0. (2.10)

We solve (2.10) for the column vector P = (x, y) using the damped Newton’s method

with p0 = (x0, y0) as initial guess. The Jacobian of L is

J(P ) =
∂L

∂P
=





fx fy + (x− x0)fxy − (y − y0)fxx

fy −fx − (y − y0)fxy + (x− x0)fyy





T

(2.11)

31



(displayed as a transpose for typographical reasons), and we iterate

pk+1 = pk − αJ−1(pk)L(pk) (2.12)

until the residual L(pk) is small. Then pk is taken as P . The signed distance from

(x0, y0) to P = (x, y) on the zero level set of f(x, y) is

d(p0) = sign (f(x0, y0))
√

(x− x0)2 + (y − y0)2. (2.13)

The damping parameter α can be set to 1.0 as default, but might have to be reduced

adaptively for convergence.

2.5 Examples

Figure 2-4 shows a number of examples, starting from a circle and extending to

relatively complicated meshes.

(1) Unit Circle. We will work directly with d =
√

x2 + y2 − 1, which can be

specified as an inline function. For a uniform mesh, h(x, y) returns a vector of 1’s.

The circle has bounding box −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, with no fixed points. A mesh

with element size approximately h0 = 0.2 is generated with two lines of code:

>> fd=inline(’sqrt(sum(p.^2,2))-1’,’p’);

>> [p,t]=distmesh2d(fd,@huniform,0.2,[-1,-1;1,1],[]);

The plots (1a), (1b), and (1c) show the resulting meshes for h0 = 0.4, h0 = 0.2,

and h0 = 0.1. Inline functions are defined without creating a separate file. The first

argument is the function itself, and the remaining arguments name the parameters to

the function (help inline brings more information). Please note the comment near

the end of the paper about the relatively slow performance of inline functions.

Another possibility is to discretize d(x, y) on a Cartesian grid, and interpolate at

other points using the dmatrix function:

>> [xx,yy]=meshgrid(-1.1:0.1:1.1,-1.1:0.1:1.1); % Generate grid

>> dd=sqrt(xx.^2+yy.^2)-1; % d(x,y) at grid points

>> [p,t]=distmesh2d(@dmatrix,@huniform,0.2,[-1,-1;1,1],[],xx,yy,dd);
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function d=dcircle(p,xc,yc,r) % Circle
d=sqrt((p(:,1)-xc).^2+(p(:,2)-yc).^2)-r;

function d=drectangle(p,x1,x2,y1,y2) % Rectangle
d=-min(min(min(-y1+p(:,2),y2-p(:,2)), ...

-x1+p(:,1)),x2-p(:,1));

function d=dunion(d1,d2) % Union
d=min(d1,d2);

function d=ddiff(d1,d2) % Difference
d=max(d1,-d2);

function d=dintersect(d1,d2) % Intersection
d=max(d1,d2);

function p=pshift(p,x0,y0) % Shift points
p(:,1)=p(:,1)-x0;

p(:,2)=p(:,2)-y0;

function p=protate(p,phi) % Rotate points around origin
A=[cos(phi),-sin(phi);sin(phi),cos(phi)];

p=p*A;

function d=dmatrix(p,xx,yy,dd,varargin) % Interpolate d(x,y) in meshgrid matrix
d=interp2(xx,yy,dd,p(:,1),p(:,2),’*linear’);

function h=hmatrix(p,xx,yy,dd,hh,varargin) % Interpolate h(x,y) in meshgrid matrix
h=interp2(xx,yy,hh,p(:,1),p(:,2),’*linear’);

function h=huniform(p,varargin) % Uniform h(x,y) distribution
h=ones(size(p,1),1);

Figure 2-3: Short help functions for generation of distance functions and size func-
tions.

(2) Unit Circle with Hole. Removing a circle of radius 0.4 from the unit circle

gives the distance function d(x, y) = |0.7−
√

x2 + y2| − 0.3:

>> fd=inline(’-0.3+abs(0.7-sqrt(sum(p.^2,2)))’);

>> [p,t]=distmesh2d(fd,@huniform,0.1,[-1,-1;1,1],[]);

Equivalently, d(x, y) is the distance to the difference of two circles:

>> fd=inline(’ddiff(dcircle(p,0,0,1),dcircle(p,0,0,0.4))’,’p’);

(3) Square with Hole. We can replace the outer circle with a square, keeping

the circular hole. Since our distance function drectangle is incorrect at the corners,

we fix those four nodes (or write a distance function involving square roots):
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(1a) (1b) (1c)

(2) (3a) (3b)

(4) (5)
(6)

(7) (8)

Figure 2-4: Example meshes, numbered as in the text. Examples (3b), (5), (6), and
(8) have varying size functions h(x, y). Examples (6) and (7) use Newton’s method
(2.12) to construct the distance function.

34



>> fd=inline(’ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.4))’,’p’);

>> pfix=[-1,-1;-1,1;1,-1;1,1];

>> [p,t]=distmesh2d(fd,@huniform,0.15,[-1,-1;1,1],pfix);

A non-uniform h(x, y) gives a finer resolution close to the circle (mesh (3b)):

>> fh=inline(’min(4*sqrt(sum(p.^2,2))-1,2)’,’p’);

>> [p,t]=distmesh2d(fd,fh,0.05,[-1,-1;1,1],pfix);

(4) Polygons. It is easy to create dpoly (not shown here) for the distance to a

given polygon, using MATLAB’s inpolygon to determine the sign. We mesh a regular

hexagon and fix its six corners:

>> phi=(0:6)’/6*2*pi;

>> pfix=[cos(phi),sin(phi)];

>> [p,t]=distmesh2d(@dpoly,@huniform,0.1,[-1,-1;1,1],pfix,pfix);

Note that pfix is passed twice, first to specify the fixed points, and next as a parame-

ter to dpoly to specify the polygon. In plot (4), we also removed a smaller rotated

hexagon by using ddiff.

(5) Geometric Adaptivity. Here we show how the distance function can be

used in the definition of h(x, y), to use the local feature size for geometric adaptivity.

The half-plane y > 0 has d(x, y) = −y, and our d(x, y) is created by an intersection

and a difference:

d1 =
√

x2 + y2 − 1 (2.14)

d2 =
√

(x + 0.4)2 + y2 − 0.55 (2.15)

d = max(d1,−d2,−y). (2.16)

Next, we create two element size functions to represent the finer resolutions near the

circles. The element sizes h1 and h2 increase with the distances from the boundaries

(the factor 0.2 gives a ratio 1.2 between neighboring elements):

h1(x, y) = 0.15− 0.2 · d1(x, y), (2.17)

h2(x, y) = 0.06 + 0.2 · d2(x, y). (2.18)
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These are made proportional to the two radii to get equal angular resolutions. Note

the minus sign for d1 since it is negative inside the region. The local feature size is

the distance between boundaries, and we resolve this with at least three elements:

h3(x, y) = (d2(x, y)− d1(x, y))/3. (2.19)

Finally, the three size functions are combined to yield the mesh in plot (5):

h = min(h1, h2, h3). (2.20)

The initial distribution had size h0 = 0.05/3 and four fixed corner points.

(6), (7) Implicit Expressions. We now show how distance to level sets can

be used to mesh non-standard geometries. In (6), we mesh the region between the

level sets 0.5 and 1.0 of the superellipse f(x, y) = (x4 + y4)
1

4 . The example in (7) is

the intersection of the following two regions:

y ≤ cos(x) and y ≥ 5

(

2x

5π

)4

− 5, (2.21)

with −5π/2 ≤ x ≤ 5π/2 and −5 ≤ y ≤ 1. The boundaries of these geometries

are not approximated by simpler curves, they are represented exactly by the given

expressions. As the element size h0 gets smaller, the mesh automatically fits to the

exact boundary, without any need to refine the representation.

(8) More complex geometry. This example shows a somewhat more compli-

cated construction, involving set operations on circles and rectangles, and element

sizes increasing away from two vertices and the circular hole.

2.6 Mesh Generation in Higher Dimensions

Many scientific and engineering simulations require 3-D modeling. The boundaries

become surfaces (possibly curved), and the interior becomes a volume instead of an

area. A simplex mesh uses tetrahedra.
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Our mesh generator extends to any dimension n. The code distmeshnd.m is

given in www-math.mit.edu/∼persson/mesh. The truss lies in the higher-dimensional

space, and each simplex has
(

n+1

2

)

edges (compared to three for triangles). The initial

distribution uses a regular grid. The input p to Delaunay is N -by-n. The ratio

Fscale between the unstretched and the average actual bar lengths is an important

parameter, and we employ an empirical dependence on n. The post-processing of a

tetrahedral mesh is somewhat different, but the MATLAB visualization routines make

this relatively easy as well. For more than three dimensions, the visualization is not

used at all.

In 2-D we usually fix all the corner points, when the distance functions are not

accurate close to corners. In 3-D, we would have to fix points along intersections

of surfaces. A choice of edge length along those curves might be difficult for non-

uniform meshes. An alternative is to generate “correct” distance functions, without

the simplified assumptions in drectangle, dunion, ddiff, and dintersect. This

handles all convex intersections, and the technique is used in the cylinder example

below.

The extended code gives 3-D meshes with very satisfactory edge lengths. There is,

however, a new problem in 3-D. The Delaunay algorithm generates slivers, which are

tetrahedra with reasonable edge lengths but almost zero volume. These slivers could

cause trouble in finite element computations, since interpolation of the derivatives

becomes inaccurate when the Jacobian is close to singular.

All Delaunay mesh generators suffer from this problem in 3-D. The good news

is that techniques have been developed to remove the bad elements, for example

face swapping, edge flipping, and Laplacian smoothing [25]. A promising method for

sliver removal is presented in [15]. Recent results [39] show that slivers are not a big

problem in the Finite Volume Method, which uses the dual mesh (the Voronoi graph).

It is not clear how much damage comes from isolated bad elements in finite element

computations [60]. The slivery meshes shown here give nearly the same accuracy for

the Poisson equation as meshes with higher minimum quality.

Allowing slivers, we generate the tetrahedral meshes in Figure 2-5.
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(9)

(10)

Figure 2-5: Tetrahedral meshes of a ball and a cylinder with a spherical hole. The
left plots show the surface meshes, and the right plots show cross-sections.

(9) Unit Ball. The ball in 3-D uses nearly the same code as the circle:

>> fd=inline(’sqrt(sum(p.^2,2))-1’,’p’);

>> [p,t]=distmeshnd(fd,@huniform,0.15,[-1,-1,-1;1,1,1],[]);

This distance function fd automatically sums over three dimensions, and the bound-

ing box has two more components. The resulting mesh has 1,295 nodes and 6,349

tetrahedra.

(10) Cylinder with Spherical Hole. For a cylinder with radius 1 and height

2, we create d1, d2, d3 for the curved surface and the top and bottom:

d1(x, y, z) =
√

x2 + y2 − 1 (2.22)

d2(x, y, z) = z − 1 (2.23)

d3(x, y, z) = −z − 1. (2.24)
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An approximate distance function is then formed by intersection:

d≈ = max(d1, d2, d3). (2.25)

This would be sufficient if the “corner points” along the curves x2 + y2 = 1, z = ±1

were fixed by an initial node placement. Better results can be achieved by correcting

our distance function using distances to the two curves:

d4(x, y, z) =
√

d1(x, y, z)2 + d2(x, y, z)2 (2.26)

d5(x, y, z) =
√

d1(x, y, z)2 + d3(x, y, z)2. (2.27)

These functions should be used where the intersections of d1, d2 and d1, d3 overlap,

that is, when they both are positive:

d =



























d4, if d1 > 0 and d2 > 0

d5, if d1 > 0 and d3 > 0

d≈, otherwise.

(2.28)

Figure 2-5 shows a mesh for the difference between this cylinder and a ball of radius

0.5. We use a finer resolution close to this ball, h(x, y, z) = min(4
√

x2 + y2 + z2 −
1, 2), and h0 = 0.1. The resulting mesh has 1,057 nodes and 4,539 tetrahedra.

(11) 4-D Hypersphere. To illustrate higher dimensional mesh generation, we

create a simplex mesh of the unit ball in 4-D. The nodes now have four coordinates

and each simplex element has five nodes. We also fix the center point p = (0, 0, 0, 0).

>> fd=inline(’sqrt(sum(p.^2,2))-1’,’p’);

>> [p,t]=distmeshnd(fd,@huniform,0.2,[-ones(1,4);ones(1,4)],zeros(1,4));

With h0 = 0.2 we obtain a mesh with 3, 458 nodes and 60, 107 elements.

It is hard to visualize a mesh in four dimensions! We can compute the total mesh

volume V4 = 4.74, which is close to the expected value of π2/2 ≈ 4.93. By extracting

all tetrahedra on the surface, we can compare the hyper-surface area S4 = 19.2 to the

39



surface area 2π2 ≈ 19.7 of a 4-D ball. The deviations are because of the simplicial

approximation of the curved surface.

The correctness of the mesh can also be tested by solving Poisson’s equation

−∇2u = 1 in the four-dimensional domain. With u = 0 on the boundary, the solution

is u = (1−r2)/8, and the largest error with linear finite elements is ‖e‖∞ = 5.8 ·10−4.

This result is remarkably good, considering that many of the elements probably have

very low quality (some elements were bad in 3-D before postprocessing, and the

situation is likely to be much worse in 4-D).

2.7 Mesh Quality

The plots of our 2-D meshes show that the algorithm produces triangles that are

almost equilateral. This is a desirable property when solving PDEs with the finite

element method. Upper bounds on the errors depend only on the smallest angle in

the mesh, and if all angles are close to 60◦, good numerical results are achieved. The

survey paper [24] discusses many measures of the “element quality”. One commonly

used quality measure is the ratio between the radius of the largest inscribed circle

(times two) and the smallest circumscribed circle:

q = 2
rin

rout

=
(b + c− a)(c + a− b)(a + b− c)

abc
(2.29)

where a, b, c are the side lengths. An equilateral triangle has q = 1, and a degenerate

triangle (zero area) has q = 0. As a rule of thumb, if all triangles have q > 0.5 the

results are good.

For a single measure of uniformity, we use the standard deviation of the ratio of

actual sizes (circumradii of triangles) to desired sizes given by h(x, y). That number

is normalized by the mean value of the ratio since h only gives relative sizes.

The meshes produced by our algorithm tend to have exceptionally good element

quality and uniformity. All 2-D examples except (8) with a sharp corner have every

q > 0.7, and average quality greater than 0.96. This is significantly better than
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Force Equilibrium by distmesh2d

Figure 2-6: Histogram comparison with the Delaunay refinement algorithm. The
element qualities are higher with our force equilibrium, and the element sizes are
more uniform.

a typical Delaunay refinement mesh with Laplacian smoothing. The average size

deviations are less than 4%, compared to 10− 20% for Delaunay refinement.

A comparison with the Delaunay refinement algorithm is shown in Figure 2-6.

The top mesh is generated with the mesh generator in the PDE Toolbox, and the

bottom with our generator. Our force equilibrium improves both the quality and the

uniformity. This remains true in 3-D, where quality improvement methods such as

those in [25] must be applied to both mesh generators.
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Chapter 3

An Advanced Mesh Generator

The mesh generator described in the previous chapter is remarkably short and simple,

and although we had to make a few compromises to achieve this the code still handles

a large class of meshing applications. In this chapter we show how to improve our

mesh generator, by increasing the performance and the robustness of the algorithm,

and generalizing it for generation of other types of meshes. But the main underlying

ideas are the same – force equilibrium in a truss structure and boundary projections

using implicit geometries. In our implementation we have used the C++ programming

language for many of these improvements, since the operations are hard to vectorize

and a for-loop based MATLAB code would be too slow.

3.1 Discretized Geometry Representations

Our mesh generator needs two functions to mesh a domain, the signed distance func-

tion d(x) and the mesh size function h(x). In Chapter 2, we used closed-form ex-

pressions for these functions and showed how to write relatively complex geometries

as combinations of simple functions. But as the complexity of the model grows,

this representation becomes inefficient and a discretized form of d(x) and h(x) is

preferable.

The idea behind the discretization is simple. We store the function values at a

finite set of points xi (node points) and use interpolation to approximate the function
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Cartesian Octree Unstructured

Figure 3-1: Background grids for discretization of the distance function and the mesh
size function.

for arbitrary x. These node points and their connectivities are part of the background

mesh and below we discuss different options.

3.1.1 Background Meshes

The most simple background mesh is a Cartesian grid (Figure 3-1, left). The node

points are located on a uniform grid, and the grid elements are rectangles in two

dimensions and blocks in three dimensions. Interpolation is fast for Cartesian grids.

For each point x we find the enclosing rectangle and the local coordinates by a

few scalar operations, and use bilinear interpolation within the rectangle. We also

find ∇u(x) in a similar way, and avoid the numerical differentiation we used in our

MATLAB code. Higher order schemes can be used for increased accuracy.

This scheme is very simple to implement (we mentioned the help functions dmatrix

and hmatrix in Chapter 2), and the Cartesian grid is particularly good for imple-

menting level set schemes and fast marching methods (see below and Chapter 5).

However, if any part of the geometry needs small cells to be accurately resolved, the

entire grid has to be refined. This combined with the fact that the number of node

points grows quadratically with the resolution (cubically in three dimensions) makes

the Cartesian background grid memory consuming for complex geometries.

An alternative is to use an adapted background grid, such as an octree structure

(Figure 3-1, center). The cells are still squares like in the Cartesian grid, but their sizes
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vary across the region. Since high resolution is only needed close to the boundary (for

the distance function), this gives an asymptotic memory requirement proportional

to the length of the boundary curve (or the area of the boundary surface in three

dimensions). The grid can also be adapted to the mesh size function to accurately

resolve parts of the domain where h(x) has large variations.

The adapted grid is conveniently stored in an octree data structure, and the cell

enclosing an arbitrary point x is found in a time proportional to the logarithm of the

number of cells. For the projections in our mesh generator, most nodes remain in the

same cell as in the previous iterations, and the time to find the cell can be reduced

by taking advantage of this. Within the cell we again use bilinear or higher order

interpolation.

A third possibility is to discretize using an arbitrary unstructured mesh (Figure 3-

1, right). This provides the freedom of using varying resolution over the domain,

and the asymptotic storage requirements are similar to the octree grid. An addi-

tional advantage with unstructured meshes is that it can be aligned with the domain

boundaries, making the projections highly accurate. This can be used to remesh an

existing triangulation in order to refine, coarsen, or improve the element qualities

(mesh smoothing). The unstructured background grid is also appropriate for moving

meshes and numerical adaptation, where the mesh from the previous time step (or

iteration) is used.

Finding the triangle (or tetrahedron) enclosing an arbitrary point x can still be

done in logarithmic time, but the algorithm is slower and more complicated. We can

again take advantage of the fact that the nodes move slowly and are likely to remain

in the same cell as in the previous iteration. The interpolation can be piecewise linear

or higher order within each element.

If we assume that all boundary nodes that are projected are located within a

small distance of the actual boundary, we do not need a mesh of the entire domain

but only a narrow band of elements around the boundary. In our MATLAB code

we also had to determine the sign of d(x) in the entire domain, but this step can be

avoided since the boundary points can be found from the connectivities. However,
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the total memory requirement is still proportional to the length/area of the boundary

curve/surface, as for the full octree or unstructured grid.

3.1.2 Initialization of the Distance Function

Before interpolating the distance function and the mesh size function on the back-

ground mesh, their values at the nodes of this grid must be calculated. For closed-form

expressions this is easy, and since we only evaluate them once for each node point,

the performance is good even for complex expressions.

For higher efficiency we can compute d(x) for the nodes in a narrow band around

the domain boundary, and use the Fast Marching Method (Sethian [55], see also Tsit-

siklis [66]) to calculate the distances at all the remaining node points. The computed

values are considered “known values”, and the nodes neighboring these can be up-

dated and inserted into a priority queue. The node with smallest unknown value is

removed and its neighbors are updated and inserted into the queue. This is repeated

until all node values are known, and the total computation requires n log n operations

for n nodes.

If the geometry is given in a triangulated form, we have to compute signed dis-

tances to the triangles. For each triangle, we find the narrow band of background

grid nodes around the triangle and compute the distances explicitly. The sign can

be computed using the normal vector, assuming the geometry is well resolved. The

remaining nodes are again obtained with the fast marching method. We also mention

the closest point transform by Mauch [38], which gives exact distance functions in

the entire domain in linear time.

A general implicit function φ can be reinitialized to a distance function in several

ways. Sussman et al [64] proposed integrating the reinitialization equation φt +

sign(φ)(|∇φ| − 1) = 0 for a short period of time. Another option is to explicitly

update the nodes close the boundary, and use the fast marching method for the rest

of the domain. If the implicit function is sufficiently smooth, we can also use the

approximate projections described below to avoid reinitialization.
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3.2 Approximate Projections

For a signed distance function d, the projection x← x−d(x)∇d(x) is exact. For more

general implicit functions φ(x) this is no longer true, and we have discussed various

ways to modify φ into a distance function. The most general approach of Section 2.4

computes distances to an arbitrary implicit boundary by solving a system of nonlinear

equations. In the previous section we mentioned the reinitialization equation and the

fast marching method, which can be used for discretized distance functions. Here, we

show how to modify the projections in the mesh generator to handle general implicit

geometry descriptions.

3.2.1 Problem Statement

The (exact) projection can be defined in the following way: Given a point p and a

function φ(p), we want to find a correction ∆p such that

φ(p + ∆p) = 0, (3.1)

∆p ‖ ∇φ(p + ∆p). (3.2)

Note that the correction should be parallel to the gradient at the boundary point

p + ∆p, not at the initial point location p. We can write (3.2) in terms of an

additional parameter t, to obtain the system

φ(p + ∆p) = 0 (3.3)

∆p + t∇φ(p + ∆p) = 0. (3.4)

These equations can also be derived by considering the constrained optimization

problem







min∆p |∆p|2

φ(p + ∆p) = 0
(3.5)
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and rewrite it using the Lagrange multiplier t. We will use this viewpoint when

computing distances to Bézier surfaces in Section 3.6.2.

For a general exact projection, we solve (3.3) using Newton iterations. This ap-

proach was described in Section 2.4, where eliminating t gives a system in ∆p only.

These iterations might be expensive, and we now discuss how to approximate the

projections by assuming a smooth implicit function φ.

3.2.2 First Order Approximation

A first order approximation can be derived by replacing φ with its truncated Taylor

expansion at p:

φ(p + ∆p) ≈ φ +∇φ ·∆p (3.6)

(φ and ∇φ in the right hand side are implicitly assumed to be evaluated at p). (3.4)

then becomes

∆p + t∇φ = 0. (3.7)

Insert into (3.6) and set to zero:

φ− t∇φ · ∇φ = 0⇒ t =
φ

|∇φ|2 , (3.8)

and

∆p =
φ

|∇φ|2∇φ. (3.9)

This is a very simple modification to get first order accuracy. Compared to the true

distance function we simply divide by the squared length of the gradient. Below we

show how to incorporate this into the MATLAB code of the previous chapter by only

one additional line of code.
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3.2.3 Second Order Approximation

We can derive a higher order approximate projection by including more terms in

the truncated Taylor expansion of φ. For simplicity we show this derivation in two

dimensions. For a point (x, y) and a small displacement (∆x, ∆y) we set

φ(x + ∆x, y + ∆y) ≈ φ + ∆xφx + ∆yφy +
∆x2

2
φxx + ∆x∆yφxy +

∆y2

2
φyy (3.10)

As before, φ and its derivatives are evaluated at the original point (x, y). (3.4)

becomes

∆x + t(φx + ∆xφxx + ∆yφxy) = 0 (3.11)

∆y + t(φy + ∆xφxy + ∆yφyy) = 0. (3.12)

Solve for ∆x, ∆y:

∆x =
(φyφxy − φxφyy)t

2 − φxt

(φxxφyy − φ2
xy)t

2 + (φxx + φyy)t + 1
(3.13)

∆y =
(φxφxy − φyφxx)t

2 − φyt

(φxxφyy − φ2
xy)t

2 + (φxx + φyy)t + 1
. (3.14)

Insert into (3.10), set to zero, multiply by denominator, and simplify to obtain a

fourth degree polynomial in t:

p4t
4 + p3t

3 + p2t
2 + p1t + p0 = 0 (3.15)

with

p0 = φ

p1 = 2φ(φxx + φyy)− φ2
x − φ2

y

p2 = φφ2
xx + φφ2

yy + 4φφyyφxx − 2φ2
yφxx − 2φ2

xφyy − 2φφ2
xy−

1

2
φ2

yφyy −
1

2
φ2

xφxx + 3φxφxyφy

p3 = −φ2
xφ

2
yy − 2φφ2

xyφxx − φ2
yφyyφxx + 2φxφxxφxyφy − 2φφ2

xyφyy − φ2
yφ

2
xx+
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1st order
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Figure 3-2: Comparison of first and second order projection schemes.

2φφ2
yyφxx − φ2

xφxxφyy + 2φxφxyφyφyy + 2φφ2
xxφyy

p4 = −φxφ
3
xyφy + φφ2

yyφ
2
xx + φφ4

xy − 2φφ2
xyφyyφxx +

1

2
φ2

yφxxφ
2
xy −

1

2
φ2

yφ
2
xxφyy−

1

2
φ2

xφ
2
yyφxx +

1

2
φ2

xφyyφ
2
xy + φxφxyφyφyyφxx (3.16)

Solve (3.16) for the real root t with smallest magnitude and insert in (3.13),(3.14) to

obtain ∆x, ∆y.

3.2.4 Examples

A comparison of the first and the second order projections is shown in Figure 3-2.

The point (x, y) = (0.23, sin(2π · 0.23) + 0.05) is projected onto the zero level set of

φ(x, y) = y − sin(2πx). The projections are repeated until the projected points are

close to φ = 0.

We can see how the first order method initially moves in the gradient direction

at x, y instead of at the boundary, and ends up far away from the closest boundary

point. The second order method moves in a direction very close to the exact one.

However, our experience is that the first order projections are sufficiently accurate
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for our mesh generator, especially when highly curved boundaries are well resolved

and φ is relatively smooth. Note that we do not really require the projections to be

exact, we simply want to move the point to any nearby boundary point.

The first order method is trivial to incorporate into our MATLAB code. The

projection using the distance function:

p(ix,:)=p(ix,:)-[d(ix).*dgradx,d(ix).*dgrady];

is replaced by (3.9):

dgrad2=dgradx.^2+dgrady.^2;

p(ix,:)=p(ix,:)-[d(ix).*dgradx./dgrad2,d(ix).*dgrady./dgrad2];

This is a significant improvement of the code, since we can “cheat” when we generate

the distance function. For example, an ellipse with semimajor/semiminor axes a, b is

given implicitly by:

φ(x, y) =
x2

a2
+

y2

b2
− 1 = 0. (3.17)

But computing the real distances d(x, y) to the boundary φ(x, y) = 0 is rather hard.

With our first order modification we can use φ to mesh the domain (with a = 2 and

b = 1):

fd=inline(’p.^2*[a;b].^(-2)-1’,’p’,’a’,’b’);

[p,t]=distmesh2d(fd,@huniform,0.2,[-2,-1;2,1],[],2,1);

The result is a high quality mesh of the ellipse (Figure 3-3), where the largest deviation

from the true boundary is only 1.8 · 10−4. If higher accuracy is desired, the code can

easily be modified to apply the projections several times.

3.3 Mesh Manipulation

In our MATLAB code the connectivities of the mesh are always computed using

the Delaunay triangulation. Every time we update the connectivities a complete

triangulation is computed, even if only a few edges were modified. Furthermore, we

do not have any control over the generated elements, if we for example want to force

edges to be aligned with the boundaries (the constrained Delaunay triangulation [16]).
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Figure 3-3: An ellipse represented implicitly and meshed using first order approximate
projections.

To achieve higher performance and robustness, the triangulation can be controlled

explicitly by local manipulation of the connectivities. In this section we describe how

this improves the element updates during the iterations, and how we can control

the node density and the generation of the initial mesh. In the next section we use

these results to create other types of meshes, including anisotropic meshes and surface

meshes.

3.3.1 Local Connectivity Updates

During the iterations, we update the connectivities to maintain a good triangulation

of the nodes. But most of the triangles are usually of high quality, and the retrian-

gulations then modify only a few of the mesh elements (in particular if a good initial

mesh is used, or when the algorithm is close to convergence). We can save computa-

tions by starting from the previous connectivities and only update the bad triangles,

and one way to do this is by local connectivity updates.

In the flipping algorithm for computing the Delaunay triangulation [4] we loop

over all the edges of the mesh and consider “flipping” the edge between neighboring

triangles (Figure 3-4, top). This decision can be made based on the standard Delaunay

in-circle condition, or some other quality norm. These iterations will terminate and

they produce the Delaunay triangulation of the nodes [4]. To obtain high performance,

we need a data structure that provides pointers to the neighbors of each triangle, and
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Edge flip

Edge split

Edge collapse

Figure 3-4: Local mesh operations. The edge flip alters the connectivity but not the
nodes, the split inserts one new node, and the collapse removes one node.

these have to be modified whenever we change the mesh.

The local updates improve the performance significantly, since we do not have

to recompute the entire Delaunay triangulation. We find the triangles that can be

improved by an edge flip, and leave the rest of the mesh intact. In our current

implementation we search through all the elements, but the element qualities could

be stored in a priority queue giving very fast access to the bad elements.

Another advantage with the local updates is that we can keep the topology of

the initial mesh. For example, by excluding edges along the boundary from the edge

flips, we will never produce elements that cross the boundaries (unless they do so in

the initial mesh). The projections are also much faster, since we always know which

nodes are part of the boundary, and we do not have to compute the distance function

at the interior nodes.

In three dimensions, the connectivities can be improved by similar local updates.

In [25], so called “face swapping” and “edge flipping” was introduced, although it is

not known if these always produce a good mesh. We have not yet implemented this,
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we use the full Delaunay triangulation for all our tetrahedral meshes. However, we

believe that the local updates in three dimensions have a good potential for generating

high-quality meshes, even avoiding the bad sliver elements. In Chapter 2, we post-

processed our tetrahedral meshes with these local updates and Laplacian smoothing

to remove most of the slivers, but integrating the updates with our mesh generator

might directly produce high-quality meshes.

3.3.2 Density Control

In our original algorithm, we relied on the initial mesh to give a good density of

nodes according to the size function h(x), and during the iterations we never added

or removed any nodes. However, in some cases it is desirable to control the node

density. During the generation of the initial mesh we can for example start with a

trivial uniform mesh given by a Cartesian background grid. Another case is when we

apply the mesh generator to moving meshes and adaptive solvers in Chapter 5, where

we want to keep a previous mesh as initial mesh, but the geometry d(x) and the size

function h(x) have changed.

When we retriangulate the nodes using Delaunay (as in our MATLAB code),

density control simply means that we add new nodes and delete existing nodes as

we wish. The desired size function h(x) at the edges is compared with the actual

edge lengths, and if they differ more than a tolerance, nodes can be inserted or

removed. The retriangulation will use the new set of nodes and the mesh generator

will rearrange them to improve the qualities.

When the mesh is manipulated locally, we have to be a little more careful when

inserting and removing nodes. The mesh has to remain a valid representation of

the domain after the modifications, and the data structures representing the element

neighbors need to be updated. One simple way to do the node insertion is to split an

edge (Figure 3-4, center). This divides the edge in half and connects the new node to

the two opposite corners. The resulting four triangles are likely to have lower quality,

but the mesh generator will improve the node locations and modify the connectivity.

Deleting a node can be done in a similar way, for example by merging two neigh-
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boring nodes into one (Figure 3-4, bottom). This operation is more complicated than

the edge split, since all elements referring to the deleted node have to be changed.

However, the pointers to neighboring elements are sufficient for doing this in a limited

number of operations, independent of the total mesh size. Another issue with node

deletion is that we have to make sure the mesh is still valid. For example, we can not

merge two boundary nodes connected by an internal edge.

3.3.3 The Initial Mesh

The first step of our iterative mesh generator is to generate the initial locations of

the node points and their connectivities. In the MATLAB code this is done by

first creating a regular grid with the given spacing h0. Points outside the domain

are removed, and for non-uniform size functions points are kept with a probability

proportional to the desired density. The new connectivities are computed in the

first iteration by a Delaunay triangulation. This technique is easy to implement and

usually generates good results, but it can be improved in several ways.

One drawback with this approach is that a large number of points might be

discarded, either because they are outside the domain or because the size function

is highly non-uniform. For example, if the desired sizes differ by several orders of

magnitude, the initial uniform mesh might not even fit in the memory. This is also

true for geometries that fill a small portion of their bounding box. One way to solve

the problem is to subdivide the region into smaller boxes (for example using an octree

data structure) and apply the technique individually in each box.

The second issue is the connectivity computation by the Delaunay triangulation.

This step is expensive and might not generate conforming elements (edges can cross

the boundary). In two dimensions we can use a constrained Delaunay triangulation

[16], but in higher dimensions such a triangulation might not exist.

In our C++ code we generate the initial mesh by a new technique, which is

more robust and efficient. We begin by enclosing the entire geometry with one large

element (a regular triangle). This mesh is then repeatedly refined until the edges

are smaller than the sizes given by h(x). These refinements can be made using local
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refinement techniques [51], but we use a simpler method where we simply split an

edge by dividing two neighboring triangles and flip edges to improve the quality.

During the refinements, elements that are completely outside the domain can be

removed since they will never be part of the final mesh. We can detect this using the

distance function, a sufficient condition is d > `max, where `max is the longest edge

of the element. After the refinements, we remove outside elements if d > 0 at the

element centroid (as in the MATLAB code).

With a good data structure and routines that operate locally, this procedure

requires a time proportional to the number of nodes, and it returns a complete mesh

including both the nodes and their connectivity.

We also mention that for a discretized implicit geometry definition, the initial

mesh can be generated directly from the discretization. For example, a 2-D Cartesian

background grid can easily be split into triangles. At the boundaries, we can generate

elements of poor quality that fit to the boundary (by splitting the boundary cells),

or we can let the mesh generator move the nodes to the boundaries as before. In

either case, the quality of the mesh is not important since it will be improved by the

iterations, and the node density can be controlled by the density control described

above.

3.4 Internal Boundaries

In finite element calculations it is often desirable to have elements that are aligned

with given internal boundaries. This makes it possible to, for example, solve partial

differential equations with discontinuities in the material coefficients. The internal

boundaries divide the geometry into several subdomains, which are connected only

through the common node points on the boundaries.

One way to obtain elements that are aligned with internal boundaries is to mesh

the boundaries separately before meshing the entire domain, and fix the location of

these generated node points and boundary elements. This is essentially the bottom-

up approach used by other mesh generators such as Delaunay refinement, and it relies
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Figure 3-5: An example of meshing with internal boundaries.

on an explicit representation of the internal boundaries.

A solution more in the spirit of our mesh generator is to represent the internal

boundaries implicitly, by another distance function dI(x) (as before, with approximate

projections this could be any smooth implicit function φI(x)). We then project

internal boundary points using this function in the same way as before. The difficulty

is to determine which points to project, since we now have points on both sides of the

boundary. A simple solution for our MATLAB code is to find edges that cross the

internal boundary and project the closer endpoint of the edge. This is not entirely

robust though, and a better solution is to start with an initial mesh that aligns

with the boundaries, and keep track of these nodes during the iterations. If a new

node tries to cross the boundary it is added to the list of boundary nodes and is

projected. Density control as described above might be required, in particular to

remove boundary nodes.

An example is shown in Figure 3-5. The square geometry has two internal bound-

aries, consisting of a circle and a polygon. Note that the same dI(x) can represent

all internal boundaries, as long as they do not cross.

57



3.5 Anisotropic Meshes

Up to now we have considered the generation of isotropic meshes, where the lengths

of all the edges in an element are approximately equal. Sometimes it is desirable

to use anisotropic elements, where the edge length depends on the orientation of

the edge. One example is in computational fluid dynamics, where solution fields

with boundary layers or shocks have large variations in one direction but not in the

other. By using anisotropic elements we can resolve the solution accurately with few

elements. Another application of anisotropic meshes is when the mesh is transformed

from a parameter space to real space, for example with parameterized surfaces (see

Section 3.6.2). The parameterization might distort the elements but this can be

compensated for by generating an appropriate anisotropic mesh in the parameter

space.

We can extend our mesh generator to generate anisotropic meshes by introducing

a local metric tensorM instead of the scalar mesh size function h. In this metric, all

desired edge lengths are one, and assuming that M is constant over an edge u, we

can compute the actual edge length from

`(u) =
√

uTMu. (3.18)

In two dimensions,M has the form

M(x, y) =





a(x, y) b(x, y)

b(x, y) c(x, y)



 . (3.19)

For the special case of an isotropic size function h(x, y), the corresponding metric is

M = I/h2. An anisotropic metric with sizes hx, hy in the x, y-directions is represented

by M = diag(1/h2
x, 1/h

2
y). In the general case, M can be written in terms of its
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eigendecomposition as

M = R





1/h2
1 0

0 1/h2
2



R−1 (3.20)

where R is a rotation matrix and h1, h2 are the desired sizes along the directions of

the column vectors of R.

To incorporate anisotropy into our mesh generator, we replace the size function h

by M, for example by the three functions a(x, y), b(x, y), c(x, y). In the calculation

of the edge lengths in the force function, we set all desired sizes to one and compute

actual lengths by (3.18) with M averaged at the two end points. The metric also

changes the connectivity updates, where we can use a modified form of the in-circle

test, or a length based quality test withM averaged over the element nodes. We also

modify the edge lengths in the density control, if applied.

An example is shown in Figure 3-6. We generate a mesh of the unit circle, where

the mesh is very fine in the radial direction near the boundary. This can be expressed

using (3.20) with the sizes

h1 = min(hmin + g(1−
√

x2 + y2), hmax) (3.21)

h2 = hmax, (3.22)

where hmin = 0.01, hmax = 0.2, and g = 0.3, and the rotation picks out the normal

and tangential directions:

R =
1

√

x2 + y2





x −y

y x



 . (3.23)

The generated mesh can accurately represent a boundary layer of thickness ∼ 0.01,

but with a total of only 500 node points.
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Figure 3-6: An anisotropic mesh of the unit circle, with small edges in the radial
direction close to the boundary.

3.6 Surface Meshes

Generating a surface mesh means we are only interested in the boundary surface of

a domain in three dimensions, or the discretization of the boundary curves in two

dimensions. This is of interest when only the surface mesh is required, for example

with boundary element methods and in computer graphics applications, but also as a

preprocessing step for generating a volume mesh (tetrahedral) with for example the

Delaunay refinement method.

3.6.1 Implicit Surfaces

For surfaces given in an explicit parameterized form, we can create a triangular mesh

in the parameter plane and map the nodes to the surface. This is a common repre-

sentation of CAD geometries, and we discuss it further in the next section. Here, we

consider the implicit specification of the boundaries as the zero level set of a function

φ(x) in R
3, just like before. This eliminates the need to form the parameterization and

to divide the domain into patches, by working directly with the implicit description.

We propose the following simple modification to generate surface meshes: Project

all the nodes after every iteration. This corresponds to assigning reaction forces

normal to the boundary of exactly the right magnitude to keep the points at the
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boundary. The actual mesh generation then proceeds almost as in the two dimensional

case, but with the nodes moving in three dimensions.

One problem with this approach to surface meshing is the generation of the con-

nectivities. The Delaunay triangulator would generate tetrahedra in the entire convex

hull. Even if we discarded all elements except for the boundary triangulation, it would

give poor element qualities. Instead, we use our explicit mesh modifications from Sec-

tion 3.3. We flip edges to improve triangle qualities, where the qualities are defined for

triangles embedded in R
3. Some care has to be taken to avoid inverting the elements.

The initial mesh can be created with the same techniques as in Section 3.3.3,

but keeping only the triangles on the surface. For a discretized geometry, such as a

Cartesian or Octree description, it is easy to triangulate the surface in each cell of

the background grid, and let the density control coarsen and/or refine the mesh. In

computer graphics a popular algorithm for this is the marching cube method [37].

An example mesh is shown in Figure 3-7. The difference between a sphere and a

cylinder is formed by smoothed set operations [70]:

φ(x) = g(−d1, R) + g(d2, R)− 1 (3.24)

d1 =
√

x2 + y2 + z2 −R1 (3.25)

d2 =
√

x2 + z2 −R2 (3.26)

g(s,R) =











4(s−R)2(9R/4− s)/(9R3) if s ≤ R,

0 otherwise,

(3.27)

with R = 0.5, R1 = 1.2, and R2 = 0.5. The size function is based on curvature and

gradient limiting (see Chapter 4), and the mesh is generated by the method described

above.

Note that this implicit representation can only be used for closed surfaces. It might

be possible to mesh an open subset of the surface using a second implicit function

that defines the new boundaries (similar to the handling of the internal boundaries

described before). We have not worked out the details on how to do these projections.

61



Figure 3-7: A triangular surface mesh, full mesh (left) and split view (right).

3.6.2 Explicit Surfaces

We now show how to mesh a parameterized surface patch, for example a rational

Bézier surface. We are given an explicit mapping r(u, v) from the parameter space

(u, v) to R
3:

r(u, v) = (X(u, v), Y (u, v), Z(u, v)). (3.28)

To mesh this parameterized surface means we want to triangulate a region Ω

in the (u, v) space such that when the nodes pi = (ui, vi) are mapped to r(pi),

the corresponding triangles are of high quality, according to some quality norm for

triangles in R
3. In general, Ω is a subset of the definition space (u, v) ∈ [0, 1]× [0, 1]

(a “trimmed surface”) . In our setting, it is natural to describe Ω implicitly by

φ(u, v) ≤ 0.

We could in principle find an implicit function representing the surface r(u, v),

for example by implicitization [54], and use the same projection techniques as we

described in the previous section. In general this results in high-degree polynomials,

and it is not clear how to handle the boundaries φ(u, v) = 0. Instead, we keep the

explicit formulation and do the projections by solving for the smallest distance from

a point to the surface.
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A straight forward method is to mesh the domain Ω in parameter space without

considering the mapping. The resulting mesh in real space is typically of low quality,

since the mapping deforms the elements. We could compensate for this by gener-

ating an appropriate anisotropic mesh in the parameter space, using the techniques

described in Section 3.5. However, we have found it easier to take advantage of our

force- and projection-based mesh generation, and create a high-quality mesh directly

in R
3. This approach is particulatly advantageous for highly distorted mappings or

degenerate surface patches, which are common in practical CAD applications.

The force calculations and the connectivity updates are done exactly as for the

implicit surface meshes, as described in Section 3.6.1. After the update, each node

pi = (xi, yi, zi) is projected back to the surface by solving for (ui, vi) that minimizes

min
ui,vi

|r(ui, vi)− pi|2 (3.29)

and setting pi ← r(ui, vi). We solve (3.29) with a damped Newton’s method, which

converges very fast because of the good initial condition from the previous node

locations. The first and second derivatives of r(u, v) can be computed by explicit

differentiation or numerically.

For the boundary nodes, which we detect from their connectivity or by φ(ui, vi) >

0, we could project using our usual projections in the (u, v)-plane. However, for

non-orthogonal mappings this gives highly inaccurate results, since in R
3 the points

are moved tangentially to the boundary. Instead we project using a constrained

optimization:







minui,vi
|r(ui, vi)− pi|2

φ(u, v) = 0
(3.30)

We rewrite (3.30) as a system of non-linear equations in terms of a Lagrange multiplier

t, and solve using Newton’s method as before. We can simplify this by a first order

approximation φ(ui, vi) = φ0 + φx(ui− u0
i ) + φy(vi− v0

i ), where (u0
i , v

0
i ) are the initial

parameter values for node i, and φx, φy are the components of the gradient evaluated
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at (u0
i , v

0
i ). The constraint φ(ui, vi) = 0 then gives us a relation between ui and vi,

φx(ui− u0
i ) + φy(vi− v0

i ) = 0, and we can apply the projection in two separate steps.

First we project (ui, vi) back orthogonally to the boundary in the (u, v) space using

the usual first order approximation:

(ũi, ṽi)← (ui, vi)−
φ(ui, vi)

|∇φ(ui, vi)|2
∇φ(ui, vi). (3.31)

Next we solve a scalar non-linear optimization problem where we search only in the

direction orthogonal to ∇φ = (φx, φy):

min
t
|r(ũi − tφy, ṽi + tφx)− pi|2, (3.32)

and finally we set pi ← r(ũi− tφy, ṽi +φxt). If this approximation is inaccurate (that

is, |φ(ũi−tφy, ṽu+φxt)| is too large), we can repeat the projections, use a second-order

approximation of φ(ui, vi), or solve the full non-linear system of equations (3.30) with

repeated evaluations of φ(ui, vi).

As an example, we generate a mesh for a bi-quadratic rational Bézier surface.

These have the form

r(u, v) =

∑2

i=0

∑2

j=0 wijbijBi,2(u)Bj,2(v)
∑2

i=0

∑2

j=0 wijBi,2(u)Bj,2(v)
, (3.33)

where the basis functions Bi,n are Bernstein polynomials

Bi,n(t) =
n!

i!(n− i)!
(1− t)n−iti, i = 0, . . . , n, (3.34)

bij are control points, and wij are weights. Figure 3-8 (top) shows the mapping of

(u, v) ∈ [0, 1] × [0, 1] to a surface together with its control points bij. In the middle

plot, we show how a high-quality mesh in the parameter space gets deformed by the

mapping. Finally, in the bottom plot we show the result after force equilibrium in

R
3 and first-order projections as described above. This mesh is of course distorted in

the parameter space, but we did not have to explicitly work with this anisotropy.
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Rational Bézier surface and control points

Direct mapping from parameter space (u, v)

Force equilibrium in R
3

Figure 3-8: Mesh generation for a Bézier surface patch. Finding a force equilibrium
in R

3 gives a high-quality mesh directly.
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Chapter 4

Mesh Size Functions

Unstructured mesh generators use varying element sizes to resolve fine features of

the geometry but have a coarse grid where possible to reduce total mesh size. The

element sizes can be described by a mesh size function h(x) which is determined by

many factors. At curved boundaries, h(x) should be small to resolve the curvature.

In region with small local feature size (“narrow regions”), small elements have to be

used to get well-shaped elements. In an adaptive solver, constraints on the mesh size

are derived from an error estimator based on a numerical solution. In addition, h(x)

must satisfy any restrictions given by the user, such as specified sizes close to a point,

a boundary, or a subdomain of the geometry. Finally, the ratio between the sizes

of neighboring elements has to be limited, which corresponds to a constraint on the

magnitude of ∇h(x).

In many mesh generation algorithms it is advantageous if an appropriate mesh

size function h(x) is known prior to computing the mesh. This includes our mesh

generator that we developed in Chapter 2 and 3, but also the advancing front method

[48] and the paving method for quadrilateral meshes [6]. The popular Delaunay

refinement algorithm [53], [59] typically does not need an explicit size function since

good element sizing is implied from the quality bound, but higher quality meshes can

be obtained with good a-priori size functions.

Many techniques have been proposed for automatic generation of mesh size func-

tions, see [47], [73], [72]. A common solution is to represent the size function in
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a discretized form on a background grid and obtain the actual values of h(x) by

interpolation, as described in Section 3.1.1.

We present several new approaches for automatic generation of mesh size func-

tions. We represent the geometry by its signed distance function (distance to the

boundary). We compute the curvature and the medial axis directly from the distance

function, and we propose a new skeletonization algorithm with subgrid accuracy.

The gradient limiting constraint is expressed as the solution of our gradient limiting

equation, a hyperbolic PDE which can be solved efficiently using fast solvers.

4.1 Problem Statement

We define our mesh size function h(x) for a given geometry by the following five

properties:

1. Curvature Adaptation On the boundaries, we require h(x) ≤ 1/K|κ(x)|, where

κ is the boundary curvature. The resolution is controlled by the parameter K

which is the number of elements per radian in 2-D (it is related to the maximum

spanning angle θ by 1/K = 2 sin(θ/2)).

2. Local Feature Size Adaptation Everywhere in the domain, h(x) ≤ lfs(x)/R.

The local feature size lfs(x) is, loosely speaking, half the width of the geometry

at x,. The parameter R gives half the number of elements across narrow regions

of the geometry.

3. Non-geometric Adaptation An additional external spacing function hext(x)

might be given by an adaptive numerical solver or as a user-specified function.

We then require that h(x) ≤ hext(x).

4. Grading Limiting The grading requirement means that the size of two neigh-

boring elements in a mesh should not differ more than a factor G, or hi ≤ Ghj

for all neighboring elements i, j. The continuous analogue of this is that the

magnitude of the gradient of the size function is limited by |∇h(x)| ≤ G−1 ≡ g
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(an alternative definition is g ≡ log G, depending on the interpretation of the

element sizes).

5. Optimality In addition to the above requirements (which are all upper bounds),

we require that h(x) is as large as possible at all points.

We now show how to create a size function h(x) according to these requirements,

starting from an implicit boundary definition by its signed distance function φ(x),

with a negative sign inside the geometry.

4.2 Curvature Adaptation

To resolve curved boundaries accurately, we want to impose the curvature requirement

h(x) ≤ hcurv(x) on the boundaries, with











hcurv(x) = 1/K|κ(x)|, if φ(x) = 0,

∞, if φ(x) 6= 0,

(4.1)

where κ(x) is the curvature at x. In three dimensions we use the maximum principal

curvature in order to resolve the smallest radius of curvature.

For an unstructured background grid, where the elements are aligned with the

boundaries, we simply assign values for h(x) on the boundary nodes and set the

remaining nodal values to infinity. Later on, the gradient limiting will propagate

these values into the rest of the region. The boundary curvature might be available

as a closed form expression, or it can be approximated from the surface triangulation.

For an implicit boundary discretization on a Cartesian background grid we can

compute the curvature from the distance function, for example in 2-D:

κ = ∇ · ∇φ

|∇φ| =
φxxφ

2
y − 2φyφxφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

. (4.2)

In 3-D similar expressions give the mean curvature H and the Gaussian curvature

K, from which the principal curvatures are obtained as κ = H ±
√

H2 −K. On
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a Cartesian grid, we use standard second-order difference approximations for the

derivatives.

These difference approximations give us accurate curvatures at the node points,

and we could compute mesh sizes directly according to (4.1) on the nodes close to the

boundary, and set the remaining interior and exterior nodes to infinity. However, since

in general the nodes are not located on the boundary, we get a poor approximation of

the true, continuous, curvature requirement (4.1). Below we show how to modify the

calculations to include a correction for node points not aligned with the boundaries.

In two dimensions, suppose we calculate a curvature κij at the grid point xij. This

point is generally not located on the boundary, but a distance |φij| away. If we set

hcurv(xij) = 1/(K|κij|) we get two sources of errors:

• We use the curvature at xij instead of at the boundary. We can compensate

for this by adding φij to the radius of curvature:

κbound =
1

1
κij

+ φij

=
κij

1 + κijφij

(4.3)

Note that we keep the signs on κ and φ. If, for example, φ > 0 and κ > 0,

we should increase the radius of curvature. This expression is exact for circles,

including the limiting case of zero curvature (a straight line).

• Even if we use the corrected curvature κbound, we impose our hcurv at the grid

point xij instead of at the boundary. However, the grid point will be affected

indirectly by the gradient limiting, and we can get a better estimate of the

correct h by adding g|φij|. Interpolation of this expression involving an absolute

function is inaccurate, and again we keep the sign of φ and subtract gφij (that

is, we add the distance inside the region and subtract it outside).

Putting this together, we get the following definition of hcurv in terms of the grid
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spacing ∆x:

hcurv(xij) =











∣

∣

∣

1+κijφij

Kκij

∣

∣

∣
− gφij, |φij| ≤ 2∆x,

∞, |φij| > 2∆x.

(4.4)

This will limit the edge sizes in a narrow band around the boundaries, but it will

not have any effect in the interior of the region. A similar expression can be used in

three dimensions, where the curvature is replaced by maximum principal curvature

as before, and the correction makes the expression exact for spheres and planes.

4.3 Feature Size Adaptation

For feature size adaptation, we want to impose the condition h(x) ≤ hlfs(x) every-

where inside our domain, where











hlfs(x) = lfs(x)/R, if φ(x) ≤ 0,

∞, if φ(x) > 0.

(4.5)

The local feature size lfs(x) is a measure of the distance between nearby boundaries.

It is defined by Ruppert [53] as “the larger distance from x to the closest two non-

adjacent polytopes [of the boundary]”. For our implicit boundary definitions, there

is no clear notion of adjacent polytopes, and we use instead the similar definition

(inspired by the definition for surface meshes in [2]) that the local feature size at a

boundary point x is equal to the smallest distance between x and the medial axis.

The medial axis is the set of interior points that have equal distance to two or more

points on the boundary.

This definition of local feature size can be extended to the entire domain in many

ways. We simply add the distance function for the domain boundary to the distance

functions for the medial axis, to obtain our definition:

lfsMA(x) = |φ(x)|+ |φMA(x)|, (4.6)
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where φ(x) is the distance function for the domain and φMA(x) is the distance to its

medial axis (MA). The distances φMA(x) are always positive, but we take its absolute

value to emphasize that we always add positive distances.

The expression (4.6) obviously reduces to the definition in [2] at boundary points

x, since then φ(x) = 0. For a narrow region with parallel boundaries, lfs(x) is exactly

half the width of the region, and a value of R = 1 would resolve the region with two

elements.

To compute the local feature size according to (4.6), we have to compute the

medial axis transform φMA(x) in addition to the given distance function φ(x). If

we know the location of the medial axis we can use the techniques described in

Section 3.1.2, for example explicit calculations near the medial axis and the fast

marching method for the remaining nodes. The identification of the medial axis

is often referred to as skeletonization, and a large number of algorithms have been

proposed. Many of them, including the original Grassfire algorithm by Blum [8], are

based on explicit representations of the geometry. Kimmel et al [36] described an

algorithm for finding the medial axis from a distance function in two dimensions, by

segmenting the boundary curve with respect to curvature extrema. Siddiqi et al [62]

used a divergence based formulation combined with a thinning process to guarantee

a correct topology. Telea and Wijk [52] showed how to use the fast marching method

for skeletonization and centerline extraction.

Although in principle we could use any existing algorithm for skeletonization using

distance functions, we have developed a new method mainly because our requirements

are slightly different than those in other applications. Maintaining the correct topol-

ogy is not a high priority for us, since we do not use the skeleton topology (and if

we did, we could combine our algorithm with thinning, as in [62]). This means that

small “holes” in the skeleton will only cause a minor perturbation of the local feature

size. However, an incorrect detection of the skeleton close to the boundary is worse,

since our definition (4.6) would set the feature size to a very small value close to that

point.

We also need a higher accuracy of the computed medial axis location. Applications
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in image processing and computer graphics often work on a pixel level, and having a

higher level of detail is referred to as subgrid accuracy. A final desired requirement

is to minimize the number of user parameters, since the algorithm must work in

an automated way. Other algorithms typically use fixed parameters to eliminate

incorrect skeleton points close to curved regions. We use the curvature to determine

if candidate points should be accepted, based on a parameter giving the smallest

resolved curvature.

Our method is based on a simple idea: For all edges in the computational grid, we

fit polynomials to the distance function at each side of the edge, and detect if they

cross somewhere along the edge (Figure 4-1). Such a crossing becomes a candidate for

a new skeleton point and we apply several tests, more or less heuristic, to determine

if the point should be accepted.

The complete algorithm is shown in Table 4.1. We scale the domain to have

unit spacing, and for each edge we consider the interval s ∈ [−2, 3] where s ∈ [0, 1]

corresponds to the edge. Next we fit quadratic polynomials p1 and p2 to the values of

the distance function at the two sides of the edge, and compute their crossings. Our

tests to determine if a crossing should be considered a skeleton point are summarized

below:

• There should be exactly one root s0 along the edge s ∈ [0, 1].

• The derivative of p2 should be strictly greater than the derivative of p1 in s ∈
[−2, 3] (it is sufficient to check the endpoints, since the derivatives are linear)

• The dot product α between the two propagation directions should be smaller

than a tolerance, which depends on the curvatures of the two fronts (see below).

• We reject the point if another crossing is detected within the interval [−2, 3]

with a larger derivative difference dp2/ds− dp1/ds at the crossing s0.

The dot product α is evaluated from one-sided difference approximations of ∇φ.

This is compared to the expected dot product between two front from a circle of radius

1/|κ|, where κ is the largest curvature at the two points. With one unit separation
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Algorithm 4-1: Skeletonization using Distance Function

Description: Compute the crossing between grid edges and the medial axis.
Input: Grid xijk, discretized distance function φijk, parameters γ and κtol

Output: Medial axis crossings pi and distances to neighboring nodes φMA(xijk)

Normalize grid points xijk and φijk to have unit grid spacing
Compute ∇φijk with one-sided difference approximations
Compute maximal principal curvature κijk from φijk with difference approximations
for all consecutive six nodes xi−2:i+3,j,k

Define φ1, . . . , φ6 = φi−2,j,k, . . . , φi+3,j,k

Fit parabola p1(s) to the data points (s, φ) = (−2, φ1), (−1, φ2), (0, φ3)
Fit parabola p2(s) to the data points (s, φ) = (1, φ4), (2, φ5), (3, φ6)
Find real roots of ∆p(s) = p2(s)− p1(s)

if one root s0 in [0, 1] and d∆p/ds > 0 in [−2, 3]
Let κ1 = κi−1,j,k and κ2 = κi+2,j,k

Compute dot product α between fronts at xi,j,k and xi+1,j,k

α = ∇φi,j,k · ∇φi+1,j,k

if α < 1− γ2 max(κ2
1, κ

2
2, κ

2
tol)/2:

Accept p = xijk + e1hs0 as a medial axis point
Compute medial axis normal

n = (nx, ny, nz) =
∇φi,j,k −∇φi+1,j,k

‖∇φi,j,k −∇φi+1,j,k‖

Compute the distance to the two neighboring points

φMA,1 = |nxhs|
φMA,2 = |nxh(1− s0)|

end if

end if

end for

Within each interval xi−2:i+3,j,k keep pi with largest d∆p/ds(s0)
Repeat for consecutive nodes in y- and z-direction

Table 4.1: The algorithm for detecting the medial axis in a discretized distance func-
tion and computing the distances to neighboring nodes.
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Figure 4-1: Detection of shock in the distance function φ(x, y) along the edge (i, j), (i+
1, j). The location of the shock is given by the crossing of the two parabolas p1(x)
and p2(x).

between the points and an angle θ between the fronts, this dot product is

cos θ = 1− 2 sin2(θ/2) = 1− 2(|κ|/2)2 = 1− κ2/2 (4.7)

We reject the point if the actual dot product α is larger than this for any of the

curvatures κ1, κ2 at the two sides of the edge or the given tolerance κtol. We calculate

κ using difference approximations, and to avoid the shock we evaluate it one grid

point away from the edge. To compensate for this we include a tolerance γ in the

computed curvatures.

If the point is accepted as a medial axis point, we obtain the normal of the medial
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Figure 4-2: Examples of medial axis calculations for some planar geometries.

axis by subtracting the two gradients. The distance from the medial axis to the two

neighboring points are then |nxhs0| and |nxh(1 − s0)|. These are used as boundary

conditions when solving for φMA(x) in the entire domain using the fast marching

method.

Some examples of medial axis detections are shown in Figure 4-2. Note how

the three parabolas (top right) are handled correctly with the curvature dependent

tolerances.

4.4 Gradient Limiting

An important requirement on the size function is that the ratio of neighboring element

sizes in the generated mesh is less than a given value G. This corresponds to a limit on

the gradient |∇h(x)| ≤ g with g ≡ G−1. In some simple cases, this can be built into

the size function explicitly. For example, a “point-source” size constraint h(y) = h0

in a convex domain can be extended as h(x) = h0 + g|x− y|, and similarly for other

shapes such as edges. For more complex boundary curves, local feature sizes, user

constraints, etc, such an explicit formulation is difficult to create and expensive to

evaluate. It is also harder to extend this method to non-convex domains (such as the

example in Figure 4-6), or to non-constant g (Figures 4-10 and 4-11).

76



One way to limit the gradients of a discretized size function is to iterate over the

edges of the background mesh and update the size function locally for neighboring

nodes [10]. When the iterations converge, the solution satisfies |∇h(x)| ≤ g only

approximately, in a way that depends on the mesh. Another method is to build a

balanced octree, and let the size function be related to the size of the octree cells [26].

This data structure is used in the quadtree meshing algorithm [71], and the balancing

guarantees a limited variation in element sizes, by a maximum factor of two between

neighboring cells. However, when used as a size function for other meshing algorithms

it provides an approximate discrete solution to the original problem, and it is hard

to generalize the method to arbitrary gradients g or different background meshes.

We present a new technique to handle the gradient limiting problem, by a contin-

uous formulation of the process as a Hamilton-Jacobi equation. Since the mesh size

function is defined as a continuous function of x, it is natural to formulate the gra-

dient limiting as a PDE with solution h(x) independently of the actual background

mesh. We can see many benefits in doing this:

• The analytical solution is exactly the optimal gradient limited size function

h(x) that we want, as shown by Theorem 4.4.1. The only errors come from

the numerical discretization, which can be controlled and reduced using known

solution techniques for hyperbolic PDEs.

• By relying on existing well-developed Hamilton-Jacobi solvers we can generalize

the algorithm in a straightforward way to

– Cartesian grids, octree grids, or fully unstructured meshes

– Higher order discretizations

– Space and solution dependent g

– Regions embedded in higher-dimensional spaces, for example surface meshes

in 3-D.

• We can compute the solution in O(n log n) time using a modified fast marching

method.
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4.4.1 The Gradient Limiting Equation

We now consider how to limit the magnitude of the gradients of a function h0(x),

to obtain a new gradient limited function h(x) satisfying |∇h(x)| ≤ g everywhere.

We require that h(x) ≤ h0(x), and at every x we want h to be as large as possible.

We claim that h(x) is the steady-state solution to the following Gradient Limiting

Equation:

∂h

∂t
+ |∇h| = min(|∇h|, g), (4.8)

with initial condition

h(t = 0,x) = h0(x). (4.9)

When |∇h| ≤ g, (4.8) gives that ∂h/∂t = 0, and h will not change with time.

When |∇h| > g, the equation will enforce |∇h| = g (locally), and the positive sign

multiplying |∇h| ensures that information propagates in the direction of increasing

values. At steady-state we have that |∇h| = min(|∇h|, g), which is the same as

|∇h| ≤ g.

For the special case of a convex domain in R
n and constant g, we can derive an

analytical expression for the solution to (4.8), showing that it is indeed the optimal

solution:

Theorem 4.4.1. Let Ω ⊂ R
n be a bounded convex domain, and I = (0, T ) a given

time interval. The steady-state solution h(x) = limT→∞ h(x, T ) to











∂h
∂t

+ |∇h| = min(|∇h|, g) (x, t) ∈ Ω× I

h(x, t)|t=0 = h0(x) x ∈ Ω

(4.10)

is

h(x) = min
y

(h0(y) + g|x− y|). (4.11)
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Proof. The Hopf-Lax theorem [34] states that the solution to the Hamilton-Jacobi

equation du
dt

+ F (∇u) = 0 with initial condition u(x, 0) = u0(x) and convex F (w) is

given by

u(x, t) = min
y

[u0(y) + tF ∗ ((x− y)/t)] , (4.12)

where F ∗(u) = maxw(wu− F (w)) is the conjugate function of F .

For our equation (4.10), rewrite as ∂h
∂t

+F (∇h) = 0, with F (w) = |w|−min(|w|, g).

The conjugate function is

F ∗(u) = max
w

(wu− F (w))

= max
w

(wu− |w|+ min(|w|, g))

=











g|u|, if |u| < 1,

+∞ if |u| ≥ 1.

(4.13)

Using (4.12), we get

h(x, t) = min
y

[h0(y) + tF ∗ ((x− y)/t)]

= min
y

|x−y|≤t

(h0(y) + g|x− y|). (4.14)

Let t→∞ to get the steady-state solution to (4.10):

h(x) = min
y

(h0(y) + g|x− y|). (4.15)

Note that the solution (4.11) is composed of infinitely many point-source solutions

as described before. We could in principle define an algorithm based on (4.11) for

computing h from a given h0 (both discretized). Such an algorithm would be trivial

to implement, but its computational complexity would be proportional to the square

of the number of node points. Instead, we solve (4.10) using efficient Hamilton-Jacobi
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Max Gradient g = 4 Max Gradient g = 2

Max Gradient g = 1 Max Gradient g = 0.5

Figure 4-3: Illustration of gradient limiting by ∂h/∂t + |∇h| = min(|∇h|, g). The
dashed lines are the initial conditions h0 and the solid lines are the gradient limited
steady-state solutions h for different parameter values g.

solvers.

The gradient limiting is illustrated by a one dimensional example in Figure 4-

3, where (4.10) is solved using different values of g and a simple scalar function

as initial condition. Note how the large gradients are reduced exactly the amount

needed, without affecting regions far away from them. This is very different from

traditional smoothing, which affects all data and gives excessive perturbation of the

original function h0(x). Our solution is not necessarily smooth, but it is continuous

and |∇h| ≤ g everywhere.

4.4.2 Implementation

One advantage with the continuous formulation of the problem is that a large variety

of solvers can be used almost as black-boxes. This includes solvers for structured and

unstructured grids, higher-order methods, and specialized fast solvers.

On a Cartesian background grid, the equation (4.8) can be solved with just a few
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lines of code using the following iteration:

hn+1
ijk = hn

ijk + ∆t
(

min(∇+
ijk, g)−∇+

ijk

)

(4.16)

where

∇+
ijk =

[

max(D−xhn
ijk, 0)2 + min(D+xhn

ijk, 0)2+

max(D−yhn
ijk, 0)2 + min(D+yhn

ijk, 0)2+

max(D−zhn
ijk, 0)2 + min(D+zhn

ijk, 0)2
]1/2

(4.17)

Here, D−x is the backward difference operator in the x-direction, D+x the forward

difference operator, etc. The iterations are initialized by h0 = h0, and we iterate until

the updates ∆h(x) are smaller than a given tolerance. The ∆t parameter is chosen

to satisfy the CFL-condition, we use ∆t = ∆x/2. The boundaries of the grid do not

need any special treatment since all characteristics point outward.

The iteration (4.16) converges relatively fast, although the number of iterations

grows with the problem size so the total computational complexity is superlinear.

Nevertheless, the simplicity makes this a good choice in many situations. If a good

initial guess is available, this time-stepping technique might even be superior to other

methods. This is the case for problems with moving boundaries, where the size

function from the last mesh is likely to be close to the new size function, or in

numerical adaptivity, when the original size function already has relatively small

gradients because of numerical properties of the underlying PDE. The scheme (4.16)

is first-order accurate in space, and higher accuracy can be achieved by using a second-

order solver. See [45] and [33] for details.

For faster solution of (4.8) we use a modified version of the fast marching method

(see Section 3.1.2). The main idea for solving our PDE (4.8) is based on the fact that

the characteristics point in the direction of the gradient, and therefore smaller values

are never affected by larger values. This means we can start by fixing the smallest

value of the solution, since it will never be modified. We then update the neighbors
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Algorithm 4-2: Fast Gradient Limiting

Description: Solve (4.8) on a Cartesian grid
Input: Initial discretized h0, grid spacing ∆x
Output: Discretized solution h

Set h = h0

Insert all hijk in a min-heap with back pointers
while heap not empty

Remove smallest element IJK from heap
for neighbors ijk of IJK still in heap:

compute upwind |∇hijk|
if |∇hijk| > g

Solve for hnew
ijk in ∇+

ijk = g from (4.17)
Set hijk ← min(hijk, h

new
ijk )

end if

end for

end while

Table 4.2: The fast gradient limiting algorithm for Cartesian grids. The computa-
tional complexity is O(n log n), where n is the number of nodes in the background
grid.

of this node by a discretization of our PDE, and repeat the procedure. To find the

smallest value efficiently we use a min-heap data structure.

During the update, we have to solve for a new hijk in ∇+
ijk = g, with ∇+

ijk from

(4.17). This expression is simplified by the fact that hijk should be larger than all

previously fixed values of h, and we can solve a quadratic equation for each octant

and set hijk to the minimum of these solutions.

Our fast algorithm is summarized as pseudo-code in Table 4.2. Compared to the

original fast marching method, we begin by marking all nodes as TRIAL points, and

we do not have any FAR points. The actual update involves a nonlinear right-hand

side, but it always returns increasing values so the update procedure is valid. The

heap is large since all elements are inserted initially, but the access time is still only

O(log n) for each of the n nodes in the background grid. In total, this gives a solver

with computational complexity O(n log n). For higher-order accuracy, the technique

described in [55] can be applied.
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An unstructured background grid gives a more efficient representation of the size

function and higher flexibility in terms of node placement. A common choice is to

use an initial Delaunay mesh, possibly with a few additional refinements. Several

methods have been developed to solve Hamilton-Jacobi equations on unstructured

grids, and we have implemented the positive coefficient scheme by Barth and Sethian

[3]. The solver is slightly more complicated than the Cartesian variants, but the

numerical schemes can essentially be used as black-boxes. A triangulated version of

the fast marching method was given in [35], and in [18] the algorithm was generalized

to arbitrary node locations.

One particular unstructured background grid is the octree representation, and

the Cartesian methods extend naturally to this case (both the iteration and the fast

solver). The values are interpolated on the boundaries between cells of different sizes.

We mentioned in the introduction that octrees are commonly used to represent size

functions, because of the possibility to balance the tree and thereby get a limited

variation of cell sizes. Here, we propose to use the octree as a convenient and efficient

representation, but the actual values of the size function are computed using our

PDE. This gives higher flexibility, for example the possibility to use different values

of g.

4.4.3 Performance and Accuracy

To study the performance and the accuracy of our algorithms, we consider a simple

model problem in Ω = (−50, 50) × (−50, 50) with two point-sources, h(−10, 0) = 1

and h(10, 0) = 5, and g = 0.3. The true solution is given by (4.11), and we solve the

problem on a Cartesian grid of varying resolution.

In Table 4.3 we compare the execution times for three different solvers – edge-based

iterations, Hamilton-Jacobi iterations, and the Hamilton-Jacobi fast gradient limiting

solver. The edge-based iterative solver loops until convergence over all neighboring

nodes i, j and updates the size function locally by hj ← min(hj, hi + g|xj − xi|)
(assuming hj > hi). The iterative Hamilton-Jacobi solver is based on the iteration

(4.16) with a tolerance of about two digits. All algorithms are implemented in C++
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# Nodes Edge Iter. H-J Iter. H-J Fast
10,000 0.009s 0.060s 0.006s
40,000 0.068s 0.470s 0.030s

160,000 0.844s 3.625s 0.181s
640,000 6.609s 28.422s 1.453s

Table 4.3: Performance of the edge-based iterative solver, the Hamilton-Jacobi iter-
ative solver, and the Hamilton-Jacobi fast gradient limiting solver.

using the same optimizations, and the tests were done on a PC with an Athlon XP

2800+ processor.

The table shows that the iterative Hamilton-Jacobi solver is about five times slower

than the simple edge-based iterations. This is because the update formula for the

edge-based iterations is simpler (all edge lengths are the same) and since the Hamilton-

Jacobi solver requires more iterations for high accuracy (although their asymptotic

behavior should be the same). The fast solver is better than the iterative solvers,

and the difference gets bigger with increasing problem size (since it is asymptotically

faster). Note that these background meshes are relatively large and that all solvers

probably are sufficiently fast in many practical situations.

We also mention that simple algorithms based on the explicit expression (4.11)

for convex domains or geometric searches for non-convex domains might be faster for

a small number of point-sources. However, these methods are not practical for larger

problems because of the O(n2) complexity.

Next we compare the accuracy of the edge-based solver and Hamilton-Jacobi dis-

cretizations of first and second order accuracy. The true solution is given by (4.11),

and an algorithm based on this expression would of course be exact to full precision.

Figure 4-4 shows solutions for a 100 × 100 grid, and it is clear that the edge-based

solver is highly inaccurate since it does not take into account the continuous nature

of the problem. It has a maximum error of 7.79, compared to 0.38 and 0.10 for the

Hamilton-Jacobi solvers. This is similar to the error in solving the Eikonal equa-

tion using Dijkstra’s shortest path algorithm instead of the continuous fast marching

method [55]. The error with the edge-based solver might be even larger for unstruc-
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True Solution Edge-Based

H-J, First Order H-J, Second Order

Figure 4-4: Comparison of the accuracy of the discrete edge-based solver and the
continuous Hamilton-Jacobi solver on a Cartesian background mesh. The edge-based
solver does not capture the continuous nature of the propagating fronts.

tured background meshes which often have low element qualities.

4.5 Results

We are now ready to put all the pieces together and define the complete algorithm

for generation of a mesh size function. The size functions from curvature and feature

size are computed as described in the previous sections. The external size function

hext(x) is provided as input. Our final size function must be smaller than these at

each point in space:

h0(x) = min(hcurv(x), hlfs(x), hext(x)) (4.18)
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Background h(x) New Mesh

Figure 4-5: Example of gradient limiting with an unstructured background grid. The
size function is given at the curved boundaries and computed by (4.8) at the remaining
nodes.

Finally, we apply the gradient limiting algorithm from Section 4.4 on h0 to get the

mesh size function h, by solving:

∂h

∂t
+ |∇h| = min(|∇h|, Gc) (4.19)

with initial condition h(t = 0,x) = h0(x).

We now show a number of examples, with different geometries, background grids,

and feature size definitions.

4.5.1 Mesh Size Functions in 2-D and 3-D

We begin with a simple example of gradient limiting in two dimensions on a triangular

mesh. For the geometry in Figure 4-5, we set h0(x) proportional to the radius of

curvature on the boundaries, and to∞ in the interior. We solve our gradient limiting

equation using the positive coefficient scheme to get the mesh size function in the

middle plot. A sample mesh using this result is shown in the right plot.

This example shows that we can apply size constraints in an arbitrary manner,

for example only on some of the boundary nodes. The PDE will propagate the values
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in an optimal way to the remaining nodes, and possibly also change the given values

if they violate the grading condition. For this very simple geometry, we can indeed

write the size function explicitly as

h(x) = min
i

(hi + gφi(x)). (4.20)

Here, φi and hi are the distance functions and the boundary mesh size for each of the

three curved boundaries. But consider, for example, a curved boundary with a non-

constant curvature. The analytical expression for the size function of this boundary

is non-trivial (it involves the curvature and distance function of the curve). One

solution would be to put point-sources at each node of the background mesh, but the

complexity of evaluating (4.20) grows quickly with the number of nodes. By solving

our gradient limiting equation, we arrive at the same solution in an efficient and

simple way.

In Figure 4-6 we show a size function for a geometry with a narrow slit, again

generated using the unstructured gradient limiting solver. The initial size function

h0(x) is based on the local feature size and the curved boundary at the top. Note

that although the regions on the two sides of the slit are close to each other, the small

mesh size at the curved boundary does not influence the other region. This solution

is harder to express using source expressions such as (4.20), where more expensive

geometric search routines would have to be used.

A more complicated example is shown in Figure 4-7 (left plots). Here, we have

computed the local feature size everywhere in the interior of the geometry. We com-

pute this using the medial axis based definition from Section 4.3. The result is stored

on a Cartesian grid. In some regions the gradient of the local feature size is greater

than g, and we use the fast gradient limiting solver in Algorithm 4-2 to get a well-

behaved size function. We also use curvature adaptation as before. Note that this

mesh size function would be very expensive to compute explicitly, since the feature

size is defined everywhere in the domain, not just on the boundaries.

As a final example of 2-D mesh generation, we show an object with smooth bound-
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Figure 4-6: Another example of gradient limiting, showing that non-convex regions
are handled correctly. The small sizes at the curved boundary do not affect the region
at the right, since there are no connections across the narrow slit.

aries in Figure 4-7 (right plots). We use a Cartesian grid for the background grid and

solve the gradient limiting equation using the fast solver. The feature size is again

computed using the medial axis and the distance function, and the curvature is given

by the expression with grid correction (4.4) since the grid is not aligned with the

boundaries.

The PDE-based formulation generalizes to arbitrary dimensions, and in Figure 4-

8 we show a 3-D example. Here, the feature size is computed explicitly from the

geometry description, the curvature adaptation is applied on the boundary nodes,

and the size function is computed by gradient limiting with g = 0.2. This results in

a well-shaped tetrahedral mesh, in the bottom plot.

A more complex model is shown in Figure 4-9.1 We apply gradient limiting with

g = 0.3 on a size function which is computed automatically, taking into account

curvature adaptation and feature size adaptation (from the medial axis, as described

before). The plots show the final mesh size function and an example mesh.

4.5.2 Space and Solution Dependent g

The solution of the gradient limiting equation remains well-defined if we make g(x)

a function of space. The numerical schemes in Section 4.4.2 are still valid, and we

1This model was obtained from the The Stanford 3D Scanning Repository.
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Med. Axis & Feature Size

Mesh Size Function h(x)

Mesh Based on h(x)

Figure 4-7: Mesh size functions taking into account both feature size, curvature, and
gradient limiting. The feature size is computed as the sum of the distance function
and the distance to the medial axis.
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Mesh Size Function h(x) Mesh Based on h(x)

Figure 4-8: Cross-sections of a 3-D mesh size function and a sample tetrahedral mesh.

replace for example g in (4.16) with gijk. An application of this is when some regions of

the geometry require higher element qualities, and therefore also a smaller maximum

gradient in the size function.

Figure 4-10 shows a simple example. The initial mesh size h0 is based on curvatures

and feature sizes. The left and the right parts of the region have different values of

g, and the gradient limiting generates a new size function h satisfying |∇h| ≤ g(x)

everywhere.

Another possible extension is to let g be a function of the solution h(x) (although

it is then not clear if the gradient limiting equation has one unique solution). This

can be used, for example, to get a fast increase for small element sizes but smaller

variations for large elements. In a numerical solver this might be compensated by

the smaller truncation error for the small elements. A simple example is shown in

Figure 4-11, where g(h) varies smoothly between 0.6 (for small elements) and 0.2 (for

large elements).

In the iterative solver, we replace g with g(hijk), and if the iterations converge we

have obtained a solution. In the fast solver, we solve a (scalar) non-linear equation

∇+
ijk = g(hijk) at every update.
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Mesh Size Function h(x) Mesh Based on h(x)

Split views

Figure 4-9: A 3-D mesh size function and a sample tetrahedral mesh. Note the
small elements in the narrow regions, given by the local feature size, and the smooth
increase in element sizes.
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Figure 4-10: Gradient limiting with space-dependent g(x).
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Figure 4-11: Gradient limiting with solution-dependent g(h). The distances between
the level sets of h(x) are smaller for small h, giving a faster increase in mesh size.
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Chapter 5

Applications

In this chapter we show several applications that are particularly well suited for our

mesh generator. The iterative node movement is appropriate for meshing geometries

that change with time (“moving meshes”), and we show how to combine the level

set method with the finite element method for applications in shape optimization,

stress-induced instabilities, and fluid dynamics. We can also improve remeshing for

numerical adaptation, where our gradient limiting equation is solved on the unstruc-

tured background mesh from the previous iteration. Finally, we show how implicit

geometries can be used for meshing objects in images, in two and three dimensions.

The figures in this chapter bring out the key points of each application, more

powerfully than the words. The central problem is to remesh adaptively and quickly,

maintaining high quality.

5.1 Moving Meshes

When our mesh generator creates a sequence of meshes for a moving geometry, we

always have a good initial configuration by the mesh from the previous time step.

Typically we only need a few additional iterations to obtain a new high quality mesh.

At each step, we need an initial guess for the location of the mesh points. For the first

mesh we use one of the methods in Section 3.3.3 or the simple rejection technique in

our MATLAB code. For the subsequent meshes, a fast start is obtained by displacing

93



Figure 5-1: Example of moving mesh, shown at four different times. The point density
control is used to keep the mesh size uniform when the area changes.

the mesh points a distance v(p)∆t for each mesh point p, where v(p) is the velocity

of the node point and ∆t is the time interval between the two geometries.

Moving meshes are best visualized as animations. Please visit www-math.mit.edu/

∼persson/mesh to view our movies. For the illustrations here, we show meshes at

a few different times. As a simple example of a moving mesh, we show a geometry

consisting of a square having a circular hole with a radius that changes with time,

see Figure 5-1. Note how the density control ensures that the element sizes are

approximately equal even though the geometry area changes drastically.

One benefit of the algorithm is that mesh elements far away from the moving

interface are left essentially unmodified. This allows easier and more accurate solution

transfer between the meshes and better opportunities for mesh compression. We also

take advantage of this fact to improve the performance of our algorithm. We assign a

stiffness to each mesh edge (the constant k in (2.5)) that increases with the distance

from the moving interface. A few mesh elements away we set k to infinity, which

means these nodes do not move at all. We can then ignore them when solving for

force equilibrium, which gives a significant performance improvement. The technique

is illustrated by the example in Figure 5-2, where we mesh a circular hole moving

through a rectangle. Only elements in a thin layer close to the circle are allowed to

move at each step, but the element qualities remain very high.
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Figure 5-2: Only mesh points close to the moving interface are allowed to move. This
improves the performance dramatically and provides easier solution transfer between
the old and new grids.

5.1.1 Level Sets and Finite Elements

Since our mesh generator is based on distance functions we can use the level set

method [45] to propagate the geometry boundary according to a given velocity field.

In this way we combine the benefits of the level set method (robust interface propaga-

tion, entropy solutions, topology changes, easy extension to higher dimensions) with

the flexibility of general purpose finite element calculations on unstructured meshes.

Our moving algorithm starts with an initial geometry, represented by a discretized

implicit function φ(x) as before. The geometry boundary is then evolved in time

according to a velocity field v(x) or a normal velocity field F (x). These fields are

typically dependent on a solution of a physical problem, which in turn depends on

the current geometry. With our unstructured meshes we can use the finite element

method to solve these physical problems.

The actual propagation of the boundary is done using the level set method, which

solves hyperbolic PDEs on the Cartesian grid using entropy satisfying numerical
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schemes. For a velocity field v it solves the convection equation

φt +∇φ · v = 0 (5.1)

and for a normal field F it solves the level set equation

φt + F |∇φ| = 0 (5.2)

(both v and T may depend on space and time). These equations are solved using

numerical discretizations, [56], [43]. We use different schemes for motion due to

curvature and for general, curvature independent motion. For the general motion, we

use a first order finite difference approximation on the Cartesian grid:

φn+1
ijk = φn

ijk + ∆t1
(

max(F, 0)∇+
ijk + min(F, 0)∇−

ijk

)

, (5.3)

where

∇+
ijk =

[

max(D−xφn
ijk, 0)2 + min(D+xφn

ijk, 0)2+

max(D−yφn
ijk, 0)2 + min(D+yφn

ijk, 0)2+

max(D−zφn
ijk, 0)2 + min(D+zφn

ijk, 0)2
]1/2

, (5.4)

∇−
ijk =

[

min(D−xφn
ijk, 0)2 + max(D+xφn

ijk, 0)2+

min(D−yφn
ijk, 0)2 + max(D+yφn

ijk, 0)2+

min(D−zφn
ijk, 0)2 + max(D+zφn

ijk, 0)2
]1/2

. (5.5)

Here, D−x is the backward difference operator in the x-direction, D+x the forward dif-

ference operator, etc. For the curvature dependent part of F , we use central difference

approximations when computing the curvature. For further details and higher order

schemes, see [56]. After evolving φ, it generally does not remain a signed distance

function. We reinitialize by the techniques described in Section 3.1.2, for example by

96



explicit updates of the nodes close to the boundary φ(x) = 0 and the fast marching

method for the remaining nodes.

We now show applications using moving meshes and implicit geometries. There

are many application areas and here we will focus on two shape optimization problems,

stress-induced instabilities, and fluid dynamics with moving boundaries.

5.1.2 Shape Optimization

Our first example comes from structural vibration control, and it was solved by Osher

and Santosa using level set techniques on Cartesian grids [44]. We consider the

eigenvalue problem in a region Ω with two materials:

−∆u = λρ(x)u, x ∈ Ω (5.6)

u = 0, x ∈ ∂Ω (5.7)

The density is constant in the two subregions S and Ω \ S:

ρ(x) =











ρ1 for x /∈ S

ρ2 for x ∈ S,

(5.8)

and we minimize λ1 or λ2 subject to the area constraint ‖S‖ = K.

We represent the boundary of S by a signed distance function on a Cartesian

grid. To find the optimal distribution ρ(x), we mesh the inside and the outside of the

region using the techniques for internal boundaries in Section 3.4. We then solve the

eigenvalue problem (5.6)-(5.7) using linear finite elements on our unstructured mesh.

To decrease the ith eigenvalue, we compute a descent direction δφ = −F (x)|∇φ|,
where the normal velocity is calculated using the current solution λi, ui (see [44] for

details):

F =
λi(ρ2 − ρ1)
∫

Ω
ρu2

i dx
u2

i . (5.9)
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Finally, we interpolate this velocity field to the Cartesian mesh, and use the level

set method to propagate the interface. This velocity field is generally not mass con-

serving, and we implement the conservation constraint ‖S‖ = K by solving for a

Lagrange multiplier ν such that the velocity field F + ν conserves mass. This is a

nonlinear problem in the unknown ν, which we solve using Newton’s method.

Figure 5-3 shows the minimization of the first and the second eigenvalue on a

sample geometry. Note how the dark region is split into two separate regions in

minimizing λ2. This automatic treatment of topology changes is one of the benefits

of the level set method. By using unstructured meshes and the finite element method

we achieve the following additional benefits:

• The material discontinuity is handled with high accuracy since the mesh is

aligned with the interface between the two densities.

• We handle arbitrary outer geometries, again with high accuracy. Normally the

level set method is used only on rectangular grids.

• The graded mesh sizes give asymptotically more efficient simulations.

Our second example of shape optimization comes from structural design improve-

ment. The geometry in Figure 5-4 is clamped at the left edge, and a vertical force is

applied at the midpoint of the right edge. We solve a linear elastostatic problem for

the displacements u:



























−div(Ae(u)) = 0, in Ω

u = 0, on ΓD

(Ae(u)) = g, on ΓN .

(5.10)

The linear operator A comes from Hooke’s law, and g are the boundary forces applied

on a part ΓN of the boundary. The remaining boundary ΓD is fixed.

The optimization minimizes the compliance, which is the work done by the exter-
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Figure 5-3: Finding an optimal distribution of two different densities (light gray/green
indicates low density) to minimize eigenvalues.
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nal forces g or the total elastic energy:

Minimize

∫

ΓN

g · u ds =

∫

Ω

Ae(u) · e(u) dx. (5.11)

We also impose the area constraint

‖Ω‖ = K, (5.12)

where K is significantly smaller than the initial geometry area. The steepest descent

direction is given by the velocity in the normal direction

F (x) = −Ae(u) · e(u), (5.13)

see [1] for a derivation. Sethian and Wiegmann solved this problem using level set

techniques together with the immersed interface method [57]. Allaire, Jouve, and

Toader used a similar technique but solved the linear elastostatic problem using an

Ersatz material approach [1]. Since we have high-quality unstructured meshes at

each iteration, we can solve the physical problem using the finite element method.

We discretize (5.10) using second-order triangular finite elements, and solve for the

displacements with a direct sparse solver. The energy calculation for the steepest

descent direction (5.13) is done on the unstructured mesh, and then interpolated to

the Cartesian mesh for the interface evolution. The optimal structure is shown in the

bottom plots of Figure 5-4.

Again we see advantages with our general meshes. The Neumann conditions at

most of the boundaries are handled easily and accurately with the finite element

method. The graded meshes resolve the fine details while having a minimum of total

number of nodes. Finally, in this example we used standard Lagrange elements,

but the finite element method is better developed than finite difference methods for

advanced elasticity calculations and provides specialized elements.
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Initial Mesh Final Mesh

Figure 5-4: Structural optimization for minimum of compliance. The structure is
clamped at the left edge and loaded vertically at the right edge midpoint. Note how
the initial topology is modified by the algorithm.

5.1.3 Stress-Induced Instabilities

Our next example is a numerical study of Stress Driven Rearrangement Instabilities

(SDRI). This phenomenon appears in epitaxial growth of solid nanofilms, for example

InAs (Indium Arsenide) grown on a GaAs (Gallium Arsenide) substrate. The stress

is induced by the misfit in the two lattice parameters. This results in a morphological

instability where so-called quantum dots are formed on the surface, see Figure 5-5

for an experimental result. Our simulations are based on numerical analysis of the

mathematical problem formulated and analyzed by M. Grinfeld [30].

We consider a thin sheet of material, with an initially almost flat upper surface.

Our quasi-static interface evolution is based on minimization of the total energy, due

to the elastic energy density ε and the surface tension σ:

E =

∫

Ω

ε(x) dV +

∫

ΓN

σ dS. (5.14)

From this the descent direction can be derived, to give our interface evolution equation

F (x) = ε(x)− σκ(x), (5.15)

with surface curvature κ(x). For more details see [30].

We evolve the interface with level set techniques in the same way as before. At each
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Figure 5-5: Transmission Electron Microscopy (TEM) image of defect-free InAs quan-
tum dots.

step of the quasi-static interface evolution, we generate unstructured meshes for the

domain φ(x) ≤ 0 using our iterative techniques. We then discretize the elastostatic

equations using the finite element method with second-order Lagrange elements. The

resulting sparse linear system is solved with a direct sparse solver.

The stress is imposed by applying a prestraining εx on the discretized system. We

write the total displacement field as a sum of a given stretched field U0 = εxX and

an unknown, periodic perturbation U . We then solve for U in KU = −KU0, where

K is the stiffness matrix with boundary conditions incorporated.

Figure 5-6 shows the results of a two dimensional simulation. The distance func-

tion is represented on a block of dimensions 4 × 1, discretized with a grid of size

257 × 97. Initially, the surface is located a distance 0.66 from the bottom of the

domain, and the height is perturbed at each node in the x, y-plane by normal dis-

tributed random numbers with standard deviation 0.0025. The material has Young’s

modulus E = 1, Poisson’s ratio ν = 0.3, and surface tension σ = 0.20, 0.10, 0.05 in

the three simulations.

The boundary conditions specify the displacement in the z-direction w = 0 at

the bottom face, and all displacements u, v, w are periodic at the left/right and the

front/back faces. We use a timestep ∆t1 = 0.05σ for the curvature independent part,

and ∆t2 = ∆t1/10 for the motion by curvature.

The plots in Figure 5-6 show the meshes for the initial and the final boundary

configurations, and the elastic energy density, where the color is based on a loga-

rithmic scale. Animations of the quasi-static time evolution are provided at www-
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math.mit.edu/∼persson/qdots, and more details including the results of our three di-

mensional simulations can be found in [31].

5.1.4 Fluid Dynamics

Our final example of moving meshes comes from computational fluid dynamics. We

solve the incompressible Navier-Stokes equations

∂u

∂t
− ν∇2u + u · ∇u +∇P = f (5.16)

∇ · u = 0 (5.17)

on a domain Ω that changes with time. Here, ν is the dynamic viscosity and P the

dynamic pressure, obtained by dividing the viscosity and the pressure by the density.

In our two dimensional example, the fluid velocities u = (u, v) are specified on the

entire boundary of Ω to be equal to the velocity of the boundary. Other variants

are possible, allowing inflows, outflows, and free boundaries. We do not need any

boundary conditions for the dynamic pressure P , but to make it unique we set it to

zero at a few corner points.

We discretize (5.16-5.17) in space using the finite element method, with P2-P1

elements that satisfy the LBB stability condition. For the time evolution we use a

Lagrangian approach, where at each time step we move all the mesh nodes according

to the current velocity field u. The total derivative ∂u/∂t + u · ∇u then reduces to

a simple partial derivative, and we do not have to discretize the nonlinear convection

term u · ∇u. This formulation is also natural for problems with moving boundaries,

since the boundary nodes have the same velocity as the boundary and therefore follow

it in its motion.

A serious complication with Lagrangian node movement is that the mesh deforms

significantly after a few time steps. We then do a few iterations with our mesh gen-

erator to improve the mesh. To compensate for this nonphysical node movement, we

use a simple approach of interpolation between the meshes. This introduces addi-

tional numerical diffusion into the system, but it gives reasonable velocity fields for
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Initial Configuration

Final Configuration, σ = 0.20

Final Configuration, σ = 0.10

Final Configuration, σ = 0.05

Figure 5-6: Results of the two dimensional simulations of the Stress Driven Rearrange-
ment Instability. The left plots show the meshes and the right plots show the elastic
energy densities (logarithmic color scale).
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fine meshes and small time steps, and the purpose here is to demonstrate the mesh

generation. More sophisticated techniques include L2-projections or the Arbitrary

Lagrangian-Eulerian (ALE) method [63].

The viscous term −ν∇2u is handled by an implicit time integration using back-

ward Euler. Finally, the incompressibility is enforced using Chorin’s projection

method [17]. At the end of each time step we project the velocities onto a divergence

free space by solving for an “artificial pressure” in the Pressure Poisson Equation

(PPE) ∇2P = −∇ · (u · ∇u), and subtracting its gradient from the velocities. This

simple scheme is only first order accurate in space, but higher methods are available.

We use a discrete form of the projection method with nearly consistent mass matrix,

see [29].

In our example, the domain is a square with a rotating object inside. The rotation

angle θ(t) is a given function of time, and our boundary conditions are that u = 0 at

the outer boundaries, and u = uobject at the moving object boundaries, where

uobject(x, y, t) = (−yθ′(t), xθ′(t)). (5.18)

We integrate in time until the smallest element quality is below a threshold, when we

improve the mesh and interpolate the velocities. There are better ways to do this,

for example by only updating the nodes close to elements of poor quality in order to

minimize the numerical diffusion due to interpolation.

The resulting meshes during the first time steps are shown in Figure 5-7, both

before and after the mesh improvements. This is an example where it is important

to maintain high element qualities, since we then can take more time steps before

having to retriangulate.

5.2 Meshing for Numerical Adaptation

An adaptive finite element solver starts from an initial mesh, solves the physical

problem, and estimates the error in each mesh element. From this a new mesh size
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Lagrangian Node Movement Mesh Improvement

Figure 5-7: Solving the Navier-Stokes equation on a domain with moving boundaries.
The nodes are moved with the fluid velocities until the element qualities (darkness of
the triangles) are too low, when we retriangulate using our force equilibrium.
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function can be derived, for example by equidistributing the error across the domain.

The challenge for the mesh generator is to create a new high-quality mesh, conforming

to the size function and other geometrical constraints.

One approach is to refine the existing mesh, by splitting elements that are too

large, and possibly also coarsening small elements. These local refinement techniques

are efficient, robust, and provide simple solution transfer between the meshes. The

refinement can be made in a way that completely avoids bad elements, but the average

qualities usually drop during the process.

An alternative is to remesh the domain by generating a new mesh from scratch

based on the desired size function. This technique has been considered expensive,

but it can produce meshes of very high quality if the size function is well-behaved.

However, the size functions arising from adaptive solvers may have large gradients

and they have to modified before the refinement, at least for mesh generators that

rely on good size functions.

We propose to use our new techniques for mesh size functions and mesh generation

for the remeshing. The mesh size function from the adaptive solver is gradient limited,

by solving (4.8) on the mesh from the previous iteration. We then apply a simple

density control scheme, without considering the resulting element quality. Finally,

the qualities are improved by iterating toward a force equilibrium.

To illustrate the technique, we solve Poisson’s equation with a delta source and

estimate the error in the energy norm [22], see Figure 5-8. The initial mesh and the

gradient limited size function are shown in left plot. Next, we apply a density control

by splitting and collapsing edges (center plot). Note that this mesh does not have

to be of high quality, or have good connectivity, so any simple scheme can be used.

Finally we solve for force equilibrium (right plot).

We now show two examples of numerical adaptation and remeshing using our

methods. Our first example solves a simple convective model problem on a square

geometry:

v = [1,−2πA cos 2πx] (5.19)
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Old Mesh and h(x) Density Control Force Equilibrium

Figure 5-8: The steps of the remeshing algorithm. First, a gradient limited size
function h(x) is generated by solving (4.10) on the old mesh. Next, the node density
is controlled by edge splitting and merging. Finally, we solve for a force equilibrium
in the edges using forward Euler iterations.

(with A = 0.3) and solve for u in the following advection problem:

v · ∇u(x, y) = 0, (x, y) ∈ (−1, 1)× (−1, 1) (5.20)

with boundary conditions

u(x,−1) = 0, (5.21)

u(x, 1) = 1, (5.22)

u(−1, y) =











1, if y ≥ 0

0, if y < 0.

(5.23)

The exact solution to this problem has a jump:

u(x, y) =











1, if y ≥ A sin 2πx

0, if y < A sin 2πx.

(5.24)

We discretize (5.20)-(5.23) using piecewise linear finite elements with streamline-

diffusion stabilization. To obtain an accurate numerical solution, the discontinuity

along y = A sin 2πx has to be resolved. We do this using numerical adaptation in

the L2-norm, see [22]. The size function from the adaptive scheme is highly irregular,
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Adaptive h0(x) Gradient Limited h(x) New Mesh & Solution

Figure 5-9: An example of numerical adaptation for solution of (5.20)-(5.23).

and in particular it specifies large variations in element sizes which would give low-

quality triangles. After gradient limiting the mesh size function is well-behaved and

a high-quality mesh can be generated (in the right plot of Figure 5-9).

Our next example is a compressible flow simulation over a bump at Mach 0.95. We

solve the Euler equations using the NSC2KE solver [40], and use a simple adaptive

scheme based on second-derivatives of the density [48] to determine new size functions.

These resolve the shock accurately but the sizes increase sharply away from the shock.

With gradient limiting a high quality mesh is generated.

5.3 Meshing Images

Images are special cases of implicit geometry definitions, since the boundaries of

objects in the image are not available in an explicit form. These object boundaries

can be detected by edge detection methods [28], but these typically work on pixel

level and do not produce smooth boundaries. A more natural approach is to keep the

image-based representation, and form an implicit function with a level set representing

the boundary.

Before doing this, we have to identify the objects that should be part of the

domain, in other words to segment the image. Many methods have been developed

for this, and we use the standard tools available in image manipulation programs. This
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Figure 5-10: Numerical adaptation for compressible flow over a bump at Mach 0.95.
The second-derivative based error estimator resolves the shock accurately, but gradi-
ent limiting is required to generate a new mesh of high quality.

will result in a new, binary image, which represents our domain. We also mention

that image segmentation based on the level set method, for example Chan and Vese’s

active contours without edges [14], might be a good alternative, since they produce

distance functions directly from the segmentation.

Given a binary image A with values 0 for pixels outside the domain and 1 for

those inside, we create the signed distance function for the domain by the following

steps:

1. Smooth the image with a low-pass filter, for example a simple averaging filter.

This gives a band of a few pixels where the image is smooth, and in particular

our implicit boundary A(x) = 0.5 is smooth.

2. For pixels close to the boundary, compute central difference approximations of
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the derivatives and find the approximate signed distances using the projections

in Section 3.2.

3. Use the fast marching method to obtain the distance function for the entire

domain.

Our first example is a picture of a few objects taken with a standard digital

camera, see Figure 5-11. We isolate the objects using the segmentation feature of a

image manipulation program, and create a binary mask. Next we create the distance

function as described above, and a good mesh size function based on curvature, feature

size from the medial axis, and gradient limiting. For the skeletonization we increase

κtol to compensate for the slightly noisy distance function close to the boundary.

Next we show how to mesh geographical areas in a satellite image. In Figure 5-12,

we use the same techniques as above to generate a mesh of Lake Superior1.

All techniques used for meshing the two dimensional images extend directly to

higher dimensions. The image is then a three-dimensional array of pixels, and the

binary mask selects a subvolume. Examples of this are the sampled density values

produced by computed tomography (CT) scans in medical imaging.

The meshes in Figure 5-13 are created from a CT scan of the iliac bone.2 The top

mesh is a uniform surface mesh, and the bottom mesh is a full tetrahedral mesh with

graded element sizes.

1Image courtesy of MODIS Rapid Response Project at NASA/GSFC.
2The image datasets used in this experiment were from the Laboratory of Human Anatomy and

Embryology, University of Brussels (ULB), Belgium.

111



Original Image Distance Function

Size Function Triangular Mesh

Figure 5-11: Meshing objects in an image. The segmentation is done with an image
manipulation program, the distance function is computed by smoothing and approx-
imate projections, and the size function uses the curvature, the feature size, and
gradient limiting.
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Original Image

Triangular Mesh

Figure 5-12: Meshing a satellite image of Lake Superior.
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Surface Mesh

Volume Mesh

Figure 5-13: Meshing the iliac bone. The top plots show a uniform surface mesh,
and the bottom plots show a tetrahedral volume mesh, created with an automatically
computed mesh size function.
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Chapter 6

Conclusions and Future Work

We have presented techniques for mesh generation using implicit functions. Many

extensions are possible, but the main idea of iterative node movements and boundary

projections appears to be successful for generating high-quality meshes. The simplic-

ity is an important factor, and we believe that our short MATLAB code will help

users understand mesh generation and integrate it with their own codes. The accu-

rate size functions we compute using the medial axis and the gradient limiting are

essential for achieving highest possible mesh qualities. They will likely also improve

other mesh generators that rely on a-priori size functions.

We have demonstrated how many applications can benefit from our mesh genera-

tor. In particular, it is appropriate for problems that require frequent remeshing such

as moving boundary problems and numerical adaptation. It appears that implicit

geometries are becoming increasingly popular, for example in level set methods, com-

puter graphics, and image processing. We hope that many of these applications will

find advantages with our techniques.

During our work we have identified many possibilities for future work, and we list

some of these ideas below.

Space-time meshes A space-time mesh is a mesh of the higher-dimensional space

consisting of both space and time, for example a tetrahedral mesh for two space

dimensions and time. Using these, efficient numerical methods can be created,
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in particular for moving boundary problems. It might be possible to create these

higher dimensional elements directly during our iterative node movements and

connectivity updates.

Sliver removal In all our examples of tetrahedral meshes we have used the Delaunay

triangulation, which produces poor elements called slivers. We then try to

eliminate these using the standard techniques of face swapping and edge flipping.

If we instead use these connectivity updates in the mesh generator, it might

produce high quality elements directly.

No update of good elements Usually most of the elements are of high quality

already after a few iterations, and a significant speed-up might be possible by

excluding these from the updates. Appropriate data structures can be used

to find the poor elements and their neighboring nodes, for example a priority

queue. Note that this will be particularly useful for moving meshes, since then

only the elements close to the moving boundary are deformed. In Section 5.1

we implemented this manually by adding stiffness away from the boundary, but

a quality based approach would automatically detect which elements we need

to update.

Increased robustness Although our mesh generator usually produces high-quality

meshes, there is no guarantee that it will terminate. We have implemented some

additional control logic to make it reliable when we create thousands of meshes,

such as in our moving mesh applications. We also use other termination criteria

based on element qualities. With some additional work in this area the mesh

generator might become robust enough to be used as a black-box.

Quadrilateral and hexahedral meshes Perhaps our force equilibrium and con-

nectivity updates can be used to generate high-quality quadrilateral or hexahe-

dral meshes.

More gradient limiting Our gradient limiting equation might have application in

other areas, where smoothing is traditionally used but gradient limiting is the
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desired operation, for example in signal and image processing. The fast gradi-

ent limiting solvers can be extended to unstructured meshes, and the methods

described in [35] and [18] should be applicable in a straightforward way. We

would also like to extend the gradient limiting equation to anisotropic mesh size

functions, and there might be a similar PDE (or a system of PDEs) based on

general metrics [10]. Finally, with the PDE based formulation it is possible that

error estimators for numerical adaptive solvers can be applied on the discretized

solution h(x) for adaptive generation of background meshes.

Moving meshes without background grid In our applications we use the level

set method on a Cartesian or octree background grid to evolve interfaces. But

since we generate an unstructured mesh for the domain φ(x) ≤ 0, it might

be possible to solve the level set equation on this mesh using unstructured

Hamilton-Jacobi solvers [3], and represent the distance function on the previous

mesh when generating the new mesh. This would result in a hybrid explicit-

implicit approach, since the domain is represented explicitly at each step by

the unstructured mesh, but the implicit level set equation gives robust interface

propagation, entropy solutions, and automatic handling of topology changes.

No size function For other mesh generators such as the advancing front method it

is essential to have a good size function, since the elements are created one at

a time starting from the boundaries. But in our iterative approach, we could

in principle try to determine good mesh sizes during the iterations, for example

based on element qualities. This would eliminate the need for an a-priori mesh

size function.

More applications We would like to study other shape optimization problems, for

example acoustic, aerodynamic, and photonics applications. In computational

fluid dynamics there are several interesting extensions, for example free bound-

ary flows, and using space-time meshes instead of the Lagrangian approach (as

described above). Other similar application areas are fluid-structure interaction

and contact problems, where the distance function provides a fast way to detect
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interfaces in contact. Finally, mesh generation for images is an important topic

with many applications, and a complete, user-friendly package for this would

be most welcome in the medical imaging community.
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[51] Maŕıa-Cecilia Rivara. Mesh refinement processes based on the generalized bisec-

tion of simplices. SIAM J. Numer. Anal., 21(3):604–613, 1984.

[52] Martin Rumpf and Alexandru Telea. A continuous skeletonization method based

on level sets. In Proceedings of the symposium on Data Visualisation 2002, pages

151–ff. Eurographics Association, 2002.

[53] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh

generation. J. Algorithms, 18(3):548–585, 1995.

[54] T. W. Sederberg. Implicit and Parametric Curves and Surfaces for Computer

Aided Geometric Design. PhD thesis, Purdue University, August 1983.

[55] James A. Sethian. A fast marching level set method for monotonically advancing

fronts. Proc. Nat. Acad. Sci. U.S.A., 93(4):1591–1595, 1996.

[56] James A. Sethian. Level set methods and fast marching methods, volume 3 of

Cambridge Monographs on Applied and Computational Mathematics. Cambridge

University Press, Cambridge, second edition, 1999.

[57] James A. Sethian and Andreas Wiegmann. Structural boundary design via level

set and immersed interface methods. J. Comput. Phys., 163(2):489–528, 2000.

124



[58] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Gener-

ator and Delaunay Triangulator. In Ming C. Lin and Dinesh Manocha, editors,

Applied Computational Geometry: Towards Geometric Engineering, volume 1148

of Lecture Notes in Computer Science, pages 203–222. Springer-Verlag, 1996.

[59] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular

mesh generation. Comput. Geom., 22(1-3):21–74, 2002.

[60] Jonathan Richard Shewchuk. What is a good linear element? Interpolation,

conditioning, and quality measures. In Proceedings of the 11th International

Meshing Roundtable, pages 115–126. Sandia Nat. Lab., 2002.

[61] Kenji Shimada and David C. Gossard. Bubble mesh: automated triangular

meshing of non-manifold geometry by sphere packing. In SMA ’95: Proceedings

of the Third Symposium on Solid Modeling and Applications, pages 409–419,

1995.

[62] Kaleem Siddiqi, Sylvain Bouix, Allen Tannenbaum, and Staven Zucker. The

hamilton-jacobi skeleton. In International Conference on Computer Vision

(ICCV), pages 828–834, 1999.
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