1 Numerical Simulation

Our numerical simulation of the quasi-static interface evolution is based on
a combination of the level set method and the finite element method. The
deformed interface is represented implicitly and propagated using the level set
method. The elastostatic problem is discretized with a finite element method,
using the same grid as the interface representation. A highly efficient matrix-free
multigrid solver is used to solve the linear systems of equations, which allows
us to use millions of degrees of freedom on a standard desktop computer.

1.1 Interface Evolution

The level set method of Osher and Sethian [5], [7], [4] is a technique for modeling
moving interfaces. It has found widespread use in the simulation of various
physical problems and it handles interfaces with very large deformations, even
with topological changes. In our application, the main advantages compared to
explicit techniques are the stability under curvature motion and the straight-
forward extension to three dimensions.

The interface is represented by the zero level set ¢(x) = 0 of a function ¢
discretized on a Cartesian grid, see Fig. 1 for a planar example. We also require
that ¢ is a signed distance function, with negative sign inside our domain,
positive outside, and |V¢| = 1. Note that there is no explicit representation of
the interface, but we can compute geometric quantities directly from ¢, such as
the normal vector n = V¢/|V¢| and the mean curvature k = V- (V¢/|V¢|) (we
do not substitute |[V¢| = 1 into these expressions, because ¢ will generally not
be an exact distance function). These expressions are defined for all &, not just
those on the interface, which gives us a smooth embedding of the quantities in
the entire computational domain.

We can now evolve the interface according to a given normal velocity field
F', by numerically solving a Hamilton-Jacobi equation. The level set equation

¢+ FIVo| =0 (1)

models this evolution, where F' depends on the geometry of the interface, the
solutions of the underlying physical problem, as well as any other dependence
of space and time.

During the evolution, ¢ will in general not remain a signed distance function.
Initially, this is not a problem for the accuracy of the simulations, since none
of the expressions assume |V¢| = 1. But after some time, the level sets of ¢
will be highly deformed, and then the numerical accuracy drops. To avoid this,
we reinitialize ¢ regularly, by solving for a new ¢ satisfying |[V¢| = 1 but with
the same zero level set as before. In [11], this was done by solving a nonlinear
PDE (the reinitialization equation), but this technique perturbs the interface
significantly.

Instead, we calculate the distances explicitly for all cells close to the interface.
For each cell, we detect the interface and compute the signed distances to the
neighboring grid nodes. The remaining nodes are updated by the fast marching

method [6], which solves the Eikonal equation |[V¢| = 1 in almost linear time,
making ¢ a signed distance function in the entire domain.

In our application, the normal velocity field F' is generally not mass con-
serving. We implement the conservation constraint by solving for a Lagrange
multiplier v such that the velocity field F'+ v conserves mass. This is a nonlin-
ear problem with only one unknown v, and we solve it using Newton’s method.
Note that we can compute the volume of the geometry directly from ¢ according
toV = [(1—0(¢(x))) dx, where 0(z) is Heaviside’s step function. We never use
any explicit representation of the interface, except for the reinitialization and
the postprocessing.

For the numerical solution of (1), we use different schemes for the motion due
to curvature and for the general, curvature independent motion. For the general
motion, we use a first order finite difference approximation on the Cartesian grid:

d);?]gl = ¢ + Aty (max(F O)V + min(F, O)Vwk> (2)
where
V;S-k = [max(D™"¢};.,0)* + min(DF* ¢}, 0)*+
max(D~ ygbwk,) —|—min(D+y¢Uk,)2—|—
—z.n : zn 1/2
max(ijko) + mln(D+ ijk)2] (3)
vz_]k = [mln(ljk‘?) +maX(D+z ?jka)2+
min(D~ yqﬁljk, 0)2 —|—max(D+y¢”k, 0)%+
. 1/2
IIllIl(Uk’) +maX(D+ ¢1yk7 2] / (4)

Here, D~ is the backward difference operator in the z-direction, D% the for-
ward difference operator, etc, see [7] for more details. We use a first order scheme
of a similar form in the fast marching method used for the reinitialization.

For the curvature dependent part of F, we use central differencing for all
difference approximation and update ¢ according to:

{ ((byy + ¢ZZ)¢32L + (¢xx + (bzz)d)?/ + ((stl‘ + ¢yy)¢§ }
*2¢m¢y¢zy - 2¢z¢z¢rz - 2¢)y¢z¢yz

93+ 5 + &3

d)?]-i];l ¢1,]k + AtQ
(5)

The timestep has to be small for this scheme to be stable, and we take several
steps with (5) for each step with (3), with a corresponding reduction in the
timestep At,.

1.2 Linear Elasticity

We discretize the elastostatic equations using the finite element method (FEM)
[9]. Our mesh is the same Cartesian grid as we use for representing ¢, and

T T ¢= 0.2

¢= 0.0

==] Pa=—SNEro ¢=-0.2
—_— - o —_— (p=—0 4

Figure 1: The level set representation of a deformed two-dimensional geometry.
The signed distance function ¢ is represented on a Cartesian grid, and the
interface is given by ¢(x,y) = 0.

all elements are cubes of the same size. The finite element method is often
associated with unstructured meshes that conform to the boundary, but here
we use it in a way resembling finite difference discretizations.

One important issue is how to treat the deformed surface. The physical
condition is zero normal stress, which corresponds to a Neumann boundary
condition. Since our grid is not aligned with the surface, we can not rely on
traditional FEM for these conditions. One solution is to use the immersed
interface method, which enforces the boundary conditions as constraints on the
grid nodes close to the interface [3], [8]. Another method is to generate a new,
unstructured mesh and solve the problem on this mesh, and then interpolate
back to the Cartesian grid for the interface propagation [10] . We use a simple
approach, sometimes referred to as the Ersatz method [1], where we solve the
elastostatic equation in the entire domain, and set Young’s modulus E to a small
number outside the actual geometry. This is a good approximation to Neumann
conditions, the accuracy is high enough for our purposes, and since we use a
multigrid method we do not suffer from disadvantages such as ill-conditioning
of the stiffness matrix.

We use first order shape functions and Gauss integration to compute the local
stiffness matrices. Note that all of the elements are geometrically identical, and
most of them have constant material properties, which we take advantage of
to speed up the assembly process. All the elements around the interface have
to be assembled separately, and we use a smoothed step function for Young’s
modulus and integrate with a high-order scheme.

To solve the discretized linear system of equations we use a multigrid method
with under-relaxed Jacobi iterations for the smoothing. With a Cartesian grid,
the grid hierarchy is trivial to create (as long as the number of cells in each
direction are divisible by powers of two). Using an iterative solver also means
we always have good initial guesses from the last time step. The Dirichlet
conditions and the periodicity are implemented as constraints on the system,
and we eliminate the corresponding degrees of freedom.

The prestraining €., €, is applied on the discretized system, by writing the
total displacement field as a sum of a given stretched field Uy = €, X +¢,Y and

an unknown, periodic perturbation U. We then solve for U in KU = — KU,
where K is the stiffness matrix with boundary conditions incorporated.

To obtain the required resolution, we need a very large number of nodes.
For example, a grid of size 129 x 129 x 65 gives more than a million nodes,
more than 3 million unknowns, and just to store this solution in computer
memory requires 26MB. Furthermore, the stiffness matrix will have an average
of 81 elements per row, and storing it in compressed column format [2] would
require 3GB of memory. Clearly, to solve our problems accurately on a desktop
computer we have to use a different technique.

Since most of the elements are either inside or outside the domain and have
identical geometry, we can compute two local stiffness matrices which can be
reused many times. Therefore, we do not create and store the global stiffness
matrix, but we repeat the assembly process every time we operate with the
matrix. This will result in more operations than a simple sparse matrix multi-
plication, but it allows us to solve very large problems. The two operations we
perform on the matrix are multiplication by a vector for the residual, and the
under-relaxed Jacobi step.

1.3 Results

Figure 2 shows the results of a three dimensional simulation. Our computational
domain is a block of dimensions 4x4x 1, discretized with a grid of size 193 x 193 x
49 for a total of 1,825,201 nodes and 5,475,603 degrees of freedom. Initially,
the surface is located a distance 0.66 from the bottom of the domain, and the
height is perturbed at each node in the x, y-plane by normal distributed random
numbers with standard deviation 0.0025. The material has Young’s modulus
FE =1, Poisson’s ratio v = 0.3, and surface tension ¢ = 0.10 and ¢ = 0.05 in
the two simulations.

The boundary conditions specify the displacement in the z-direction w = 0
at the bottom face, and all displacements w, v, w are periodic at the left/right
and the front/back faces. We use a timestep At; = 0.050 for the curvature
independent part, and Aty = At;/10 for the motion by curvature.

The two plots in Figure 2 show the surface at times t = 240At; and t =
350Aty, respectively. The color represents the elastic energy density, ranging
from zero (blue) to large values (red). Animations of the quasi-static time
evolution can be found at www-math.mit.edu/~persson/qdots.

References

[1] G. Allaire, F. Jouve, and A.-M. Toader. A level-set method for shape
optimization. C.R. Acad. Sci. Paris, Ser. I, 334:1125-1130, 2002.

[2] I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems.
ACM Transactions on Mathematical Software, 15(1):1-14, March 1989.

[3]

[10]

[11]

R. J. LeVeque and Z. Li. The immersed interface method for elliptic equa-
tions with discountinuous coefficients and singular sources. SIAM J. Nu-
mer. Anal., 31:1019, 1994.

S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer-Verlag, 2002.

S. Osher and J. Sethian. Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations. J. of Compu-
tational Physics, 79:12-49, 1988.

J. Sethian. A fast marching level set method for monotonically advancing
fronts. In Proceedings of the National Academy of Sciences, volume 93 (4),
pages 1591-1595, 1996.

J. Sethian. Level Set Methods and Fast Marching Methods: Evolving Inter-
faces in Computational Geometry. Cambridge University Press, 1999.

J. Sethian and A. Wiegmann. Structural boundary design via level set and
immersed interface methods. J. Comput. Phys., 163:489-528, 2000.

G. Strang and G. Fix. An Analysis of the Finite Element Method. Wellesley-
Cambridge Press, 1973.

G. Strang and P.-O. Persson. Circuit simulation and moving mesh gener-
ation. In Proc. of Int. Symp. on Comm. and Inform. Tech. 2004 (ISCIT
2004), November 2005.

M. Sussman, P. Smereka, and S. Osher. A levelset approach for computing
solutions to incompressible two-phase flow. J. of Computational Physics,
114:146-159, 1994.

Final Configuration, ¢ = 0.10

Final Configuration, ¢ = 0.05

Figure 2: Results of the 3-D simulation.

