Chapter 1 – Vector Spaces

Per-Olof Persson
persson@berkeley.edu
Department of Mathematics
University of California, Berkeley
Math 110 Linear Algebra

n-tuples

Example
The set of all n-tuples (a₁, a₂, ..., aₙ) with a₁, a₂, ..., aₙ ∈ F is denoted Fⁿ. This is a vector space with the operations of coordinatewise addition and scalar multiplication: if c ∈ F and u = (a₁, a₂, ..., aₙ) ∈ Fⁿ, v = (b₁, b₂, ..., bₙ) ∈ Fⁿ, then u + v = (a₁ + b₁, a₂ + b₂, ..., aₙ + bₙ), cu = (ca₁, ca₂, ..., caₙ).

u, v are equal if aᵢ = bᵢ for i = 1, 2, ..., n. Vectors in Fⁿ can be written as column vectors

\[
\begin{pmatrix}
a_1 \\ a_2 \\ \vdots \\ a_n
\end{pmatrix}
\]
or row vectors (a₁, a₂, ..., aₙ).

Properties of Vector Spaces

Theorem 1.1 (Cancellation Law for Vector Addition)
If x, y, z are vectors in a vector space V such that x + y = y + z, then x = y.

Corollary 1
The vector 0 described in (VS 3) is unique (the zero vector).

Corollary 2
The vector -x described in (VS 4) is unique (the additive inverse).

Vector Spaces

Definition
A vector space V over a field F is a set with the operations addition and scalar multiplication, so that for each pair x, y ∈ V there is a unique x + y ∈ V, and for each a ∈ F and x ∈ V there is a unique ax ∈ V, such that:

(VS 1) For all x, y ∈ V, x + y = y + x.
(VS 2) For all x, y, z ∈ V, (x + y) + z = x + (y + z).
(VS 3) There exists 0 ∈ V such that x + 0 = x for each x ∈ V.
(VS 4) For each x ∈ V, there exists y ∈ V such that x + y = 0.
(VS 5) For each x ∈ V, 1x = x.
(VS 6) For each a, b ∈ F and each x ∈ V, (ab)x = a(bx).
(VS 7) For each a ∈ F and x, y ∈ V, a(x + y) = ax + ay.
(VS 8) For each a, b ∈ F and each x ∈ V, (a + b)x = ax + bx.

Matrices

Example
An m × n matrix is an array of the form

\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\]

where aᵢⱼ ∈ F for 1 ≤ i ≤ m, 1 ≤ j ≤ n. The set of all these matrices is denoted Mₘₓₙ(F), which is a vector space with the operations of matrix addition and scalar multiplication: For A, B ∈ Mₘₓₙ(F) and c ∈ F,

\[
(A + B)ᵢⱼ = Aᵢⱼ + Bᵢⱼ \\
(cA)ᵢⱼ = cAᵢⱼ
\]

for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Functions and Polynomials

Example
Let F(S, F) denote the set of all functions from a nonempty set S to a field F. This is a vector space with the usual operations of addition and scalar multiplication: if f, g ∈ F(S, F) and c ∈ F:

\[(f + g)(s) = f(s) + g(s), \quad (cf)(s) = cf(s) \quad \text{for each} \ s ∈ S.\]

Example
The set P(F) of all polynomials with coefficients in F:

\[f(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0\]
is a vector space with the usual operations of addition and scalar multiplication (set higher coefficients to zero if different degrees):

\[f(x) + g(x) = (a_n + b_n)x^n + \cdots + (a_1 + b_1)x + (a_0 + b_0), \quad cf(x) = ca_nx^n + \cdots + ca_1x + ca_0.\]
Subspaces

Definition

A subset \(W \) of a vector space \(V \) over a field \(F \) is called a **subspace** of \(V \) if \(W \) is a vector space over \(F \) with the operations of addition and scalar multiplication defined on \(V \).

Note that \(V \) and \(\{0\} \) are subspaces of any vector space \(V \). \(\{0\} \) is called the **zero subspace** of \(V \).

Verification of Subspaces

It is clear that properties (VS 1, 2, 5-8) hold for any subset of vectors in a vector space. Therefore, a subset \(W \) of a vector space \(V \) is a subspace of \(V \) if and only if:

1. \(x + y \in W \) whenever \(x, y \in W \)
2. \(cx \in W \) whenever \(c \in F \) and \(x \in W \)
3. \(W \) has a zero vector
4. Each vector in \(W \) has an additive inverse in \(W \)

Furthermore, the zero vector of \(W \) must be the same as of \(V \), and property 4 follows from property 2 and Theorem 1.2.

A subset \(W \) of a vector space \(V \) is a subspace of \(V \) if and only if:

1. \(0 \in W \)
2. \(x + y \in W \) whenever \(x, y \in W \)
3. \(cx \in W \) whenever \(c \in F \) and \(x \in W \)

Intersections and Unions of Subspaces

Theorem 1.4

Any intersection of subspaces of a vector space \(V \) is a subspace of \(V \).

However, the union of subspaces is not necessarily a subspace, since it need not be closed under addition.

Symmetric and Diagonal Matrices

Example

- The transpose \(A^t \) of an \(m \times n \) matrix \(A \) is the \(n \times m \) matrix obtained by interchanging rows and columns of \(A \), that is, \((A^t)_{ij} = A_{ji} \).
- A symmetric matrix \(A \) has \(A^t = A \) and must be square.
- The set \(W \) of all symmetric matrices in \(M_{n \times n}(F) \) is a subspace of \(M_{n \times n}(F) \).

- An \(m \times m \) matrix \(M \) is a **diagonal matrix** if \(M_{ij} = 0 \) whenever \(i \neq j \).
- The set of diagonal matrices is a subspace of \(M_{n \times n}(F) \).

Linear Combinations

Definition

Let \(V \) be a vector space and \(S \) a nonempty subset of \(V \). A vector \(v \in V \) is called a **linear combination** of vectors of \(S \) if there exist a finite number of vectors \(u_1, u_2, \ldots, u_n \) in \(S \) and scalars \(a_1, a_2, \ldots, a_n \) in \(F \) such that

\[
v = a_1u_1 + a_2u_2 + \cdots + a_nu_n.
\]

In this case we also say that \(v \) is a linear combination of \(u_1, u_2, \ldots, u_n \) and call \(a_1, a_2, \ldots, a_n \) the **coefficients** of the linear combination.

Note that \(0v = 0 \) for each \(v \in V \), so the zero vector is a linear combination of any nonempty subset of \(V \).

Systems of Linear Equations

To solve a system of linear equations, perform the operations:

1. Interchanging the order of any two equations
2. Multiplying any equation by a nonzero constant
3. Adding a constant multiple of one equation to another
to simplify the original system to one with the following properties:
 - The first nonzero coefficient in each equation is one
 - If an unknown is the first unknown with a nonzero coefficient in an equation, then that unknown occurs with a zero coefficient in each other equation
 - The first unknown with a nonzero coefficient in an equation has a larger subscript than the first unknown with a nonzero coefficient in the preceding equations.

It is then easy to solve for some unknowns in terms of the others, or if an equation has the form \(0 = c \neq 0 \), then the system has no solutions.
Span

Definition
Let S be a nonempty subset of a vector space V. The span of S, denoted $\text{span}(S)$, is the set consisting of all linear combinations of the vectors in S. For convenience, we define $\text{span}(\emptyset) = \{0\}$.

Theorem 1.5
The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of V that contains S must also contain the span of S.

Definition
A subset S of a vector space V generates (or spans) V if $\text{span}(S) = V$. In this case, we also say that the vectors of S generate (or span) V.

Properties of Bases

Theorem 1.8
Let V be a vector space and $\beta = \{u_1, \ldots, u_n\}$ be a subset of V. Then β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β:

$$v = a_1u_1 + a_2u_2 + \cdots + a_nu_n$$

for unique scalars a_1, \ldots, a_n.

Theorem 1.9
If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

Linear Dependence

Definition
A subset S of a vector space V is called linearly dependent if there exist a finite number of distinct vectors u_1, u_2, \ldots, u_n in S and scalars a_1, a_2, \ldots, a_n, not all zero, such that

$$a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0.$$

In this case we also say that the vectors of S are linearly dependent.

Definition
A subset S of a vector space that is not linearly dependent is called linearly independent, and the vectors of S are linearly independent.

Properties of linearly independent sets
- The empty set is linearly independent
- A set with a single nonzero vector is linearly independent
- A set is linearly independent \iff the only representations of 0 as a linear combination of its vectors are trivial

Basis

Definition
A basis β for a vector space V is a linearly independent subset of V that generates V. The vectors of β form a basis for V.

Example
Since $\text{span}(\emptyset) = \{0\}$ and \emptyset is linearly independent, \emptyset is a basis for the zero vector space.

Example
The basis $\{e_1, \ldots, e_n\}$ with $e_1 = (1, 0, \ldots, 0)$, $e_2 = (0, 1, 0, \ldots, 0)$, \ldots, $e_n = (0, \ldots, 0, 1)$, is called the standard basis for F^n.

Example
The basis $\{1, x, x^2, \ldots, x^n\}$ is called the standard basis for $P_n(F)$.

The Replacement Theorem

Theorem 1.10 (Replacement Theorem)
Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly $n - m$ vectors such that $L \cup H$ generates V.

Corollary 1
Let V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.
Dimension

Definition

A vector space V is called **finite-dimensional** if it has a basis consisting of a finite number of vectors, this unique number $\dim(V)$ is called the **dimension** of V. If V is not finite-dimensional it is called **infinite-dimensional**.

Corollary 2

Let V be a vector space with dimension n.

(a) Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.

(b) Any linearly independent subset of V that contains exactly n vectors is a basis for V.

(c) Every linearly independent subset of V can be extended to a basis for V.

Dimension of Subspaces

Theorem 1.11

Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional and $\dim(W) \leq \dim(V)$. Moreover, if $\dim(W) = \dim(V)$, then $V = W$.

Corollary

If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended to a basis for V.