Chapter 5 – Diagonalization

Per-Olof Persson
persson@berkeley.edu
Department of Mathematics
University of California, Berkeley
Math 110 Linear Algebra

Diagonalization

A linear operator T on a finite-dimensional vector space V is **diagonalizable** if and only if there exists an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is diagonalizable if L_A is diagonalizable.

Definition

Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is an eigenvector of T if there exists a scalar eigenvalue λ corresponding to the eigenvector v such that $T(v) = \lambda v$. Let $A \in M_{n \times n}(F)$. A nonzero vector $v \in F^n$ is an eigenvector of A if v is an eigenvector of L_A; that is, if $Av = \lambda v$ for some scalar eigenvalue λ of A corresponding to the eigenvector v.

Theorem 5.1

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an ordered basis β for V consisting of eigenvectors of T. If T is diagonalizable, $\beta = \{v_1, \ldots, v_n\}$ is an ordered basis of eigenvectors of T, and $D = [T]_\beta$, then D is a diagonal matrix and D_{jj} is the eigenvalue corresponding to v_j for $1 \leq j \leq n$.

To diagonalize a matrix or a linear operator is to find a basis of eigenvectors and the corresponding eigenvalues.

Theorem 5.2

Let $A \in M_{n \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $\det(A - \lambda I_n) = 0$.

Definition

Let $A \in M_{n \times n}(F)$. The polynomial $f(t) = \det(A - tI_n)$ is called the characteristic polynomial of A.

Definition

Let T be a linear operator on an n-dimensional vector space V with ordered basis β. We define the characteristic polynomial $f(t)$ of T to be the characteristic polynomial of $A = [T]_\beta$: $f(t) = \det(A - tI_n)$.

Theorem 5.3

Let $A \in M_{n \times n}(F)$.

(a) The characteristic polynomial of A is a polynomial of degree n with leading coefficient $(-1)^n$.

(b) A has at most n distinct eigenvalues.

Theorem 5.4

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T - \lambda I)$.

Theorem 5.5

Let T be a linear operator on a vector space V, and let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of T. If v_1, \ldots, v_k are the corresponding eigenvectors, then $\{v_1, \ldots, v_k\}$ is linearly independent.

Corollary

Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenvalues, then T is diagonalizable.

Definition

A polynomial $f(t)$ in $P(F)$ splits over F if there are scalars c, a_1, \ldots, a_n in F such that $f(t) = c(t - a_1)(t - a_2) \cdots (t - a_n)$.

Theorem 5.6

The characteristic polynomial of any diagonalizable operator splits.
Multiplicity

Definition

Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial $f(t)$. The (algebraic) multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of $f(t)$.

Diagonalizability

Definition

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T having multiplicity m. Then $1 \leq \dim(E_\lambda) \leq m$.

Theorem 5.9

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of T. For $i = 1, \ldots, k$, let $v_i \in E_{\lambda_i}$. If
\[v_1 + v_2 + \cdots + v_k = 0, \]
then $v_i = 0$ for all i.

Theorem 5.10

Let W_1, \ldots, W_k be subspaces of finite-dimensional vector space V. The following are equivalent:

(a) $V = W_1 \oplus \cdots \oplus W_k$.
(b) $V = \sum_{i=1}^{k} W_i$ and for any v_1, \ldots, v_k s.t. $v_i \in W_i$ (1 \leq i \leq k), if $v_1 + \cdots + v_k = 0$, then $v_i = 0$ for all i.
(c) Each $v \in V$ can be uniquely written as $v = v_1 + \cdots + v_k$, where $v_i \in W_i$.
(d) If γ_i is an ordered basis for W_i (1 \leq i \leq k), then $\gamma_1 \cup \cdots \cup \gamma_k$ is an ordered basis for V.
(e) For each $i = 1, \ldots, k$ there exists an ordered basis γ_i for W_i such that $\gamma_1 \cup \cdots \cup \gamma_k$ is an ordered basis for V.

Theorem 5.11

A linear operator T on finite-dimensional vector space V is diagonalizable \iff V is the direct sum of the eigenspaces of T.

Direct Sums

Theorem 5.10

Let W_1, \ldots, W_k be subspaces of finite-dimensional vector space V.

Matrix Limits

Definition

Let L, A_1, A_2, \ldots be $n \times p$ matrices with complex entries. The sequence A_1, A_2, \ldots is said to converge to the limit L if
\[\lim_{m \to \infty} (A_m)_{ij} = L_{ij} \text{ for all } 1 \leq i \leq n \text{ and } 1 \leq j \leq p. \]
If L is the limit of the sequence, we write $\lim_{m \to \infty} A_m = L$.

Theorem 5.12

Let A_1, A_2, \ldots be a sequence of $n \times p$ matrices with complex entries that converges to L. Then for any $P \in M_{n \times n}(C)$ and $Q \in M_{p \times n}(C)$,
\[\lim_{m \to \infty} PA_m = PL \text{ and } \lim_{m \to \infty} A_m Q = LQ. \]

Corollary

Let $A \in M_{n \times n}(C)$ be such that $\lim_{m \to \infty} A^m = L$. Then for any invertible $Q \in M_{n \times n}(C)$,
\[\lim_{m \to \infty} (QAQ^{-1})^m = QLQ^{-1}. \]
Existence of Limits

Consider the set consisting of the complex number 1 and the interior of the unit disk: \(S = \{ \lambda \in \mathbb{C} : |\lambda| < 1 \text{ or } \lambda = 1 \} \).

Theorem 5.13

Let \(A \) be a square matrix with complex entries. Then \(\lim_{m \to \infty} A^m \) exists \(\iff \) both of the following hold:

(a) Every eigenvalue of \(A \) is contained in \(S \).

(b) If 1 is an eigenvalue of \(A \), then the dimension of the eigenspace corresponding to 1 equals the multiplicity of 1 as an eigenvalue of \(A \).

Invariance of Subspaces

Definition

Let \(T \) be a linear operator on a vector space \(V \). A subspace \(W \) of \(V \) is called a \(T \)-invariant subspace of \(V \) if \(T(W) \subseteq W \), that is, if \(T(v) \in W \) for all \(v \in W \).

For nonzero \(x \in V \), the subspace \(W = \text{span}(\{x, T(x), T^2(x), \ldots \}) \) is called the \(T \)-cyclic subspace of \(V \) generated by \(x \).

Theorem 5.21

Let \(T \) be a linear operator on finite-dimensional \(V \), and let \(W \) be a \(T \)-invariant subspace of \(V \). Then the characteristic polynomial of \(T_W \) divides the characteristic polynomial of \(T \).

Theorem 5.22

Let \(T \) be a linear operator on finite-dimensional \(V \), and let \(W \) be the \(T \)-cyclic subspace of \(V \) generated by nonzero \(v \in V \). Let \(k = \dim(W) \). Then

(a) \(\{v, T(v), T^2(v), \ldots, T^{k-1}(v)\} \) is a basis for \(W \).

(b) If \(a_0v + a_1T(v) + \cdots + a_{k-1}T^{k-1}(v) + T^k(v) = 0 \), then the characteristic polynomial of \(T_W \) is \(f(t) = (-1)^k(a_0 + a_1t + \cdots + a_{k-1}t^{k-1} + t^k) \).

The Cayley-Hamilton Theorem

Theorem 5.23 (Cayley-Hamilton)

Let \(T \) be a linear operator on finite-dimensional \(V \), and let \(f(t) \) be the characteristic polynomial of \(T \). Then \(f(T) = T_0 \), the zero transformation. That is, \(T \) “satisfies” its characteristic equation.

Corollary (Cayley-Hamilton Theorem for Matrices)

Let \(A \) be an \(n \times n \) matrix, and let \(f(t) \) be the characteristic polynomial of \(A \). Then \(f(A) = O \), the \(n \times n \) zero matrix.