Chapter 6 – Inner Product Spaces

Per-Olof Persson
persson@berkeley.edu
Department of Mathematics
University of California, Berkeley
Math 110 Linear Algebra

Inner Products

Definition
An inner product on a vector space V over F is a function that assigns a scalar \(\langle x, y \rangle \) for every \(x, y \in V \), such that for all \(x, y, z \in V \) and \(c \in F \):

(a) \(\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle \)
(b) \(\langle cx, y \rangle = c \langle x, y \rangle \)
(c) \(\langle x, y \rangle = \overline{\langle y, x \rangle} \) (complex conjugation)
(d) \(\langle x, x \rangle > 0 \) if \(x \neq 0 \)

Example
For \(f, g \in V = C([0,1]) \), an inner product is given by
\[
\langle f, g \rangle = \int_0^1 f(t)g(t) \, dt.
\]

Example
The Frobenius inner product on \(V = \mathbb{F}^{m \times n} \) is defined by
\[
\langle A, B \rangle = \text{tr}(B^*A) \quad \text{for } A, B \in V.
\]

Properties of Inner Product Spaces

Definition
The conjugate transpose or adjoint of \(A \in \mathbb{M}_{m \times n}(F) \) is the \(m \times n \) matrix \(A^* \) such that \((A^*)_{ij} = \overline{A_{ji}} \) for all \(i, j \).

Example
The Frobenius inner product on \(V = \mathbb{M}_{m \times n}(F) \) is defined by
\[
\langle A, B \rangle = \text{tr}(B^*A) \quad \text{for } A, B \in V.
\]

Norms

Definition
Let \(V \) be an inner product space. For \(x \in V \), the norm or the length of \(x \) is \(\|x\| = \sqrt{\langle x, x \rangle} \).

Example
For \(x = (a_1, \ldots, a_n) \in V = \mathbb{F}^n \), the Euclidean length is the norm
\[
\|x\| = \left[\sum_{i=1}^n |a_i|^2 \right]^{1/2}
\]

Theorem 6.2
For an inner product space \(V \) over \(F \) and all \(x, y \in V, c \in F \):

(a) \(\|cx\| = |c| \cdot \|x\| \)
(b) \(\|x\| = 0 \) if and only if \(x = 0 \). In any case, \(\|x\| \geq 0 \).
(c) (Cauchy-Schwarz Inequality) \(|\langle x, y \rangle| \leq \|x\| : \|y\| \)
(d) (Triangle Inequality) \(\|x + y\| \leq \|x\| + \|y\| \)

Orthogonality

Definition
Let \(V \) be an inner product space. Vectors \(x, y \in V \) are orthogonal (perpendicular) if \(\langle x, y \rangle = 0 \). A subset \(S \) of \(V \) is orthogonal if any two distinct vectors in \(S \) are orthogonal. A vector \(x \in V \) is a unit vector if \(\|x\| = 1 \). A subset \(S \) of \(V \) is orthonormal if \(S \) is orthogonal and consists entirely of unit vectors.

Example
Consider the inner product space \(H \) of continuous complex-valued functions defined on \([0,2\pi] \) with the inner product
\[
\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t)\overline{g(t)} \, dt.
\]
Let \(f_n(t) = e^{int} \) for any integer \(n \), where \(0 \leq t \leq 2\pi \). Then \(S = \{ f_n : n \text{ is an integer} \} \) is an orthonormal subset of \(H \).
Orthonormal Bases

Definition
A subset of an inner product space V is an orthonormal basis for V if it is an ordered basis that is orthonormal.

Theorem 6.3
Let V be an inner product space and $S = \{v_1, \ldots, v_k\}$ an orthogonal subset of V consisting of nonzero vectors. If $y \in \text{span}(S)$, then $y = \sum_{i=1}^{k} \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i$.

Corollary 1
If in addition S is orthonormal, then $y = \sum_{i=1}^{k} (y, v_i) v_i$.

Corollary 2
Let V be an inner product space, and S an orthogonal subset of V consisting of nonzero vectors. Then S is linearly independent.

Representations in Orthonormal Bases

Theorem 6.5
Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal basis β. Furthermore, if $\beta = \{v_1, \ldots, v_n\}$ and $x \in V$, then

$$x = \sum_{i=1}^{n} \langle x, v_i \rangle v_i.$$

Corollary
Let V be a finite-dimensional inner product space with an orthonormal basis $\beta = \{v_1, \ldots, v_n\}$. Let T be a linear operator on V, and let $A = [T]_\beta$. Then for any i and j, $A_{ij} = \langle T(v_j), v_i \rangle$.

Definition
Let β be an orthonormal subset (possibly infinite) of an inner product space V, and let $x \in V$. The Fourier coefficients of x relative to β are the scalars $\langle x, v_i \rangle$, where $y \in \beta$.

Orthonormal Complement

Theorem 6.6
Let W be a finite-dimensional subspace of an inner product space V, and let $y \in V$. Then there exist unique vectors $u \in W$ and $z \in W^\perp$ such that $y = u + z$. Furthermore, if $\{w_1, \ldots, w_k\}$ is an orthonormal basis for W, then $u = \sum_{i=1}^{k} (y, w_i) w_i$.

Corollary
The vector u in Thm 6.6 is the unique vector in W that is “closest” to y; that is, for any $x \in W$, $\|y - x\| \geq \|y - u\|$, and this inequality is an equality if and only if $x = u$ (the orthogonal projection).

Orthogonal Extension

Theorem 6.7
Suppose that $S = \{v_1, \ldots, v_k\}$ is an orthonormal set in an n-dimensional inner product space V. Then

(a) S can be extended to an orthonormal basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for V.

(b) If $W = \text{span}(S)$, then $S_1 = \{v_{k+1}, \ldots, v_n\}$ is an orthonormal basis for W^\perp.

(c) If W is any subspace of V, then

$$\dim(V) = \dim(W) + \dim(W^\perp).$$

The Adjoint

Theorem 6.8
Let V be a finite-dimensional inner product space over F, and let $g : V \to F$ be a linear transformation. Then there exists a unique vector $y \in V$ such that $g(x) = \langle x, y \rangle$ for all $x \in V$.

Theorem 6.9
Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Then there exists a unique function $T^* : V \to V$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for all $x, y \in V$. Furthermore, T^* is linear.

The linear operator T^* is called the adjoint of T.

Gram-Schmidt Orthogonalization

Theorem 6.4
Let V be an inner product space and $S = \{w_1, \ldots, w_n\}$ a linearly independent subset of V. Define $S' = \{v_1, \ldots, v_n\}$, where $v_1 = w_1$ and

$$v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} v_j \quad \text{for } 2 \leq k \leq n.$$

Then S' is an orthogonal set of nonzero vectors such that $\text{span}(S') = \text{span}(S)$.

This construction of $\{v_1, \ldots, v_n\}$ is called the Gram-Schmidt process.
Properties of Adjoints

Theorem 6.10
Let V be a finite-dimensional inner product space, and let β be an orthonormal basis for V. If T is a linear operator on V, then
\[[T^*]_\beta = [T]_\beta^T. \]

Corollary
Let A be an $n \times n$ matrix. Then $A^* = (A^T)^*$.

Theorem 6.11
Let V be an inner product space, and T, U linear operators on V.

(a) $(T + U)^* = T^* + U^*$
(b) $(cT)^* = cT^*$ for any $c \in F$
(c) $(TU)^* = U^*T^*$
(d) $T^{**} = T$
(e) $I^* = I$

Normal Operators

Definition
Let T be a linear operator on an inner product space V. T is normal if $TT^* = T^*T$. An $n \times n$ real or complex matrix A is normal if $AA^* = A^*A$.

Lemma
Let T be a linear operator on a finite-dimensional inner product space V. If T has an eigenvector, then so does T^*. If λ_1, λ_2 are distinct eigenvalues of T then the corresponding eigenvectors x_1, x_2 are orthogonal.

Theorem 6.14 (Schur)
With T as in the lemma, suppose that the characteristic polynomial of T splits. Then there exists an orthonormal basis β for V such that $[T]_\beta$ is upper triangular.

Definition
Let V be an inner product space and T a linear operator on V. T is self-adjoint (Hermitian) if $T = T^*$. An $n \times n$ real or complex matrix A is self-adjoint (Hermitian) if $A = A^*$.

Lemma
Let T be a self-adjoint operator on a finite-dimensional inner product space V. Then

(a) Every eigenvalue of T is real.
(b) Suppose that V is a real inner product space. Then the characteristic polynomial of T splits.

Theorem 6.17
Let T be a linear operator on a finite-dimensional real inner product space V. Then T is self-adjoint if and only if there exists an orthonormal basis β for V consisting of eigenvectors of T.

Unitary and Orthogonal Operators

Definition
Let T be a linear operator on a finite-dimensional inner product space V over F. If $\|T(x)\| = \|x\|$ for all $x \in V$, we call T a unitary operator if $F = \mathbb{C}$ and an orthogonal operator if $F = \mathbb{R}$.

Theorem 6.18
Let T be a linear operator on a finite-dimensional inner product space V. Then the following statements are equivalent.

(a) $TT^* = T^*T = I$
(b) $(T(x), T(y)) = (x, y)$ for all $x, y \in V$
(c) If β is an orthonormal basis for V, then $T(\beta)$ is an orthonormal basis for V.
(d) There exists an orthonormal basis β for V such that $T(\beta)$ is an orthonormal basis for V.
(e) $\|T(x)\| = \|x\|$ for all $x \in V$.

Properties of Normal Operators

Theorem 6.15
With V an inner product space and T a normal operator on V:

(a) $\|T(x)\| = \|T^*(x)\|$ for all $x \in V$.
(b) $T - cI$ is normal for every $c \in F$.
(c) If x is an eigenvector of T, then x is also an eigenvector of T^*. In fact, if $T(x) = \lambda x$, then $T^*(x) = \overline{\lambda} x$.
(d) If λ_1, λ_2 are distinct eigenvalues of T then the corresponding eigenvectors x_1, x_2 are orthogonal.
Unitary and Orthogonal Operators

Lemma

Let U be a self-adjoint operator on a finite-dimensional inner product space V. If $\langle x, U(x) \rangle = 0$ for all $x \in V$, then $U = T_0$.

Corollary 1

Let T be a linear operator on a finite-dimensional real inner product space V. Then V has an orthonormal basis of eigenvectors of T with eigenvalues of absolute value 1 if and only if T is both self-adjoint and orthogonal.

Corollary 2

Let T be a linear operator on a finite-dimensional complex inner product space V. Then V has an orthonormal basis of eigenvectors of T with eigenvalues of absolute value 1 if and only if T is unitary.

Orthogonal and Unitary Matrices

Definition

A square matrix A is called an **orthogonal matrix** if $A^t A = A A^t = I$ and **unitary** if $A^* A = A A^* = I$.

Two matrices A, B are **unitarily [orthogonally] equivalent** if and only if there exists a unitary [orthogonal] matrix P such that $A = P^* B P$.

Theorem 6.19

Let A be a complex $n \times n$ matrix. Then A is normal if and only if A is unitarily equivalent to a diagonal matrix.

Theorem 6.20

Let A be a real $n \times n$ matrix. Then A is symmetric if and only if A is orthogonally equivalent to a real diagonal matrix.

Schur and Unitarily/Orthogonally Equivalent Matrices

Theorem 6.21 (Schur)

Let $A \in M_{n \times n}(F)$ be a matrix whose characteristic polynomial splits over F.

(a) If $F = C$, then A is unitarily equivalent to a complex upper triangular matrix.

(b) If $F = R$, then A is orthogonally equivalent to a real upper triangular matrix.