Lecture 12
Stability of LU, Cholesky Factorization

MIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson (persson@mit.edu)
October 22, 2007

Stability of LU without Pivoting

- For \(A = LU \) computed without pivoting:
 \[
 \tilde{L}\tilde{U} = A + \delta A, \quad \frac{\|\delta A\|}{\|L\|\|U\|} = O(\epsilon_{\text{machine}})
 \]

- Measures the error in \(\tilde{L}\tilde{U} \), not in \(\tilde{L} \) or \(\tilde{U} \)
- Note: \(\|L\|\|U\| \) in denominator, not \(\|A\| \)
- \(\|L\| \) and \(\|U\| \) can be arbitrarily large, consider e.g.
 \[
 A = \begin{bmatrix}
 10^{-20} & 1 \\
 1 & 1
 \end{bmatrix} \begin{bmatrix}
 1 & 0 \\
 10^{20} & 1
 \end{bmatrix} \begin{bmatrix}
 10^{-20} & 1 \\
 0 & 1 - 10^{20}
 \end{bmatrix}
 \]
- Therefore, the algorithm is unstable
Stability of LU with Pivoting

- When pivoting, all entries of L are ≤ 1 in magnitude, so $\|L\| = O(1)$
- To measure the growth in U, introduce the growth factor

$$\rho = \frac{\max_{i,j} |u_{ij}|}{\max_{i,j} |a_{ij}|}$$

which implies $\|U\| = O(\rho \|A\|)$
- We then have for $PA = LU$ computed with pivoting:

$$\tilde{L}\tilde{U} = \tilde{P}A + \delta A, \quad \frac{\|\delta A\|}{\|A\|} = O(\rho \epsilon_{\text{machine}})$$

- If $\rho = O(1)$, then the algorithm is backward stable

The Growth Factor

- Consider the matrix

$$\begin{bmatrix}
1 & 1 \\
-1 & 1 \\
-1 & -1 & 1 \\
-1 & -1 & -1 & 1 \\
-1 & -1 & -1 & -1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
-1 & 1 \\
-1 & -1 & 1 \\
-1 & -1 & -1 & 1 \\
-1 & -1 & -1 & -1 & 1
\end{bmatrix} \begin{bmatrix}
1 & 1 \\
1 & 2 \\
1 & 4 \\
1 & 8 \\
1 & 16
\end{bmatrix}$$

- No pivoting occurs, so this is the $PA = LU$ factorization
- Growth factor $\rho = 16 = 2^{m-1}$ (can be shown to be the worst case)
- Therefore, $\rho \leq 2^{m-1} = O(1)$ uniformly for all matrices of dimension m
- Backward stable according to definitions, but results might be useless
- However, for some reason growth factors are always small in practice
SPD Matrices

- Reminder:
 - $A \in \mathbb{R}^{m \times m}$ is symmetric if $a_{ij} = a_{ji}$, or $A = A^T$
 - $A \in \mathbb{C}^{m \times m}$ is hermitian if $a_{ij} = \overline{a_{ji}}$, or $A = A^*$

- A hermitian matrix A is hermitian positive definite if $x^*Ax > 0$ for $x \neq 0$
 - x^*Ax is always real since $x^*Ay = \overline{y^*Ax}$
 - Symmetric positive definite, or SPD, for real matrices

- If A is $m \times m$ PD and X has full column rank, then X^*AX is PD
 - Since $(X^*AX)^* = X^*AX$, and if $x \neq 0$ then $Xx \neq 0$ and $x^*(X^*AX)x = (Xx)^*A(Xx) > 0$
 - Any principal submatrix of A is PD, and every diagonal entry $a_{ii} > 0$

- PD matrices have positive real eigenvalues and orthogonal eigenvectors

Cholesky Factorization

- Eliminate below pivot and to the right of pivot:

$$
A = \begin{bmatrix} a_{11} & w^* \\ w & K \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ w/\alpha & I \end{bmatrix} \begin{bmatrix} \alpha & w^*/\alpha \\ 0 & K - ww^*/a_{11} \end{bmatrix}
= \begin{bmatrix} \alpha & 0 \\ w/\alpha & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & K - ww^*/a_{11} \end{bmatrix} \begin{bmatrix} \alpha & w^*/\alpha \\ 0 & I \end{bmatrix} = R_1^*A_1R_1
$$

where $\alpha = \sqrt{a_{11}}$

- $K - ww^*/a_{11}$ is principal submatrix of PD matrix $R_1^{-1}AR_1^{-1}$, therefore its upper-left entry is positive
Cholesky Factorization

- Apply recursively to obtain

\[A = (R_1^*R_2^* \cdots R_m^*)(R_m \cdots R_2R_1) = R^* R, \quad r_{jj} > 0 \]

- Existence and uniqueness: Every PD matrix has a unique Cholesky factorization
 - Recursive algorithm from previous slide never breaks down
 - Also shows uniqueness, since \(\alpha = \sqrt{a_{11}} \) is given at each step, and then the entire row \(w^*/\alpha \) is given

The Cholesky Factorization Algorithm

- Factorize hermitian positive definite \(A \in \mathbb{C}^{m \times m} \) into \(A = R^* R \):

 Algorithm: Cholesky Factorization

 \[
 R = A \\
 \text{for } k = 1 \text{ to } m \\
 \quad \text{for } j = k + 1 \text{ to } m \\
 \quad \quad R_{j,j:m} = R_{j,j:m} - R_{k,j:m} \overline{R}_{kj} / R_{kk} \\
 \quad \quad R_{k,k:m} = R_{k,k:m} / \sqrt{R_{kk}}
 \]

- Operation count

\[
\sum_{k=1}^{m} \sum_{j=k+1}^{m} 2(m - j) \sim 2 \sum_{k=1}^{m} \sum_{j=1}^{k} j \sim \sum_{k=1}^{m} k^2 \sim \frac{m^3}{3}
\]
Stability

- The computed Cholesky factor \tilde{R} satisfies

$$\tilde{R}^* \tilde{R} = A + \delta A, \quad \frac{\|\delta A\|}{\|A\|} = O(\epsilon_{\text{machine}})$$

that is, the algorithm is backward stable

- But the forward errors in \tilde{R} might be large (like for QR Householder),

$$\|\tilde{R} - R\|/\|R\| = O(\kappa(A)\epsilon_{\text{machine}})$$

- Solve $Ax = b$ for positive definite A by Cholesky and 2 back substitutions
 - Operation count \sim Cholesky $\sim m^3/3$
 - Backward stable algorithm:

$$(A + \Delta A)\tilde{x} = b, \quad \frac{\|\Delta A\|}{\|A\|} = O(\epsilon_{\text{machine}})$$

Backslash in MATLAB

- $x = A \backslash b$ for dense A performs these steps (stopping when successful):
 1. If A is upper or lower triangular, solve by back/forward substitution
 2. If A is permutation of triangular matrix, solve by permuted back substitution (useful for $[L, U] = \text{lu}(A)$ since L is permuted)
 3. If A is symmetric/hermitian
 - Check if all diagonal elements are positive
 - Try Cholesky, if successful solve by back substitutions
 4. If A is Hessenberg (upper triangular plus one subdiagonal), reduce to upper triangular then solve by back substitution
 5. If A is square, factorize $PA = LU$ and solve by back substitutions
 6. If A is not square, run Householder QR, solve least squares problem