The Eigenvalue Decomposition

- Eigenvalue problem for \(m \times m \) matrix \(A \):
 \[
 Ax = \lambda x
 \]
 with eigenvalues \(\lambda \) and eigenvectors \(x \) (nonzero)

- Eigenvalue decomposition of \(A \):
 \[
 A = X\Lambda X^{-1} \quad \text{or} \quad AX = X\Lambda
 \]
 with eigenvectors as columns of \(X \) and eigenvalues on diagonal of \(\Lambda \)

- In “eigenvector coordinates”, \(A \) is diagonal:
 \[
 Ax = b \rightarrow (X^{-1}b) = \Lambda(X^{-1}x)
 \]
Multiplicity

- The eigenvectors corresponding to a single eigenvalue λ (plus the zero vector) form an *eigenspace*.
- Dimension of $E_\lambda = \dim(\null(A - \lambda I)) = \text{geometric multiplicity}$ of λ.
- The characteristic polynomial of A is:

 $$p_A(z) = \det(zI - A) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_m)$$

- λ is eigenvalue of $A \iff p_A(\lambda) = 0$
 - Since if λ is eigenvalue, $\lambda x - Ax = 0$. Then $\lambda I - A$ is singular, so $\det(\lambda I - A) = 0$.
- Multiplicity of a root λ to $p_A = \text{algebraic multiplicity}$ of λ.
- Any matrix A has m eigenvalues, counted with algebraic multiplicity.

Similarity Transformations

- The map $A \mapsto X^{-1}AX$ is a *similarity transformation* of A.
- A and B are similar if there is a similarity transformation $B = X^{-1}AX$.
- A and $X^{-1}AX$ have the same characteristic polynomials, eigenvalues, and multiplicities:
 - The characteristic polynomials are the same:

 $$p_{X^{-1}AX}(z) = \det(zI - X^{-1}AX) = \det(X^{-1}(zI - A)X)$$

 $$= \det(X^{-1})\det(zI - A)\det(X) = \det(zI - A) = p_A(z)$$
 - Therefore, the algebraic multiplicities are the same.
 - If E_λ is eigenspace for A, then $X^{-1}E_\lambda$ is eigenspace for $X^{-1}AX$, so geometric multiplicities are the same.
Algebraic Multiplicity \(\geq \) Geometric Multiplicity

- Let \(n \) first columns of \(\hat{V} \) be orthonormal basis of the eigenspace for \(\lambda \)
- Extend \(\hat{V} \) to square unitary \(V \), and form

\[
B = V^* AV = \begin{bmatrix}
\lambda I & C \\
0 & D
\end{bmatrix}
\]

- Since

\[
\det(zI - B) = \det(zI - \lambda I)\det(zI - D) = (z - \lambda)^n \det(zI - D)
\]

the algebraic multiplicity of \(\lambda \) (as eigenvalue of \(B \)) is \(\geq n \)
- \(A \) and \(B \) are similar; so the same is true for \(\lambda \) of \(A \)

Defective and Diagonalizable Matrices

- If the algebraic multiplicity for an eigenvalue \(\geq \) its geometric multiplicity, it is a *defective eigenvalue*
- If a matrix has any defective eigenvalues, it is a *defective matrix*
- A *nondefective or diagonalizable* matrix has equal algebraic and geometric multiplicities for all eigenvalues
- The matrix \(A \) is nondefective \(\iff \) \(A = X\Lambda X^{-1} \)
 - \((\iff) \) If \(A = X\Lambda X^{-1} \), \(A \) is similar to \(\Lambda \) and has the same eigenvalues and multiplicities. But \(\Lambda \) is diagonal and thus nondefective.
 - \((\implies) \) Nondefective \(A \) has \(m \) linearly independent eigenvectors. Take these as the columns of \(X \), then \(A = X\Lambda X^{-1} \).
Determinant and Trace

- The trace of A is $\text{tr}(A) = \sum_{j=1}^{m} a_{jj}$
- The determinant and the trace are given by the eigenvalues:
 \[
 \det(A) = \prod_{j=1}^{m} \lambda_j, \quad \text{tr}(A) = \sum_{j=1}^{m} \lambda_j
 \]

since $\det(A) = (-1)^m \det(-A) = (-1)^m p_A(0) = \prod_{j=1}^{m} \lambda_j$ and

\[
 p_A(z) = \det(zI - A) = z^m - \sum_{j=1}^{m} a_{jj} z^{m-1} + \cdots
\]

\[
 p_A(z) = (z - \lambda_1) \cdots (z - \lambda_m) = z^m - \sum_{j=1}^{m} \lambda_j z^{m-1} + \cdots
\]

Unitary Diagonalization and Schur Factorization

- A matrix A is \textit{unitary diagonalizable} if, for a unitary matrix Q, $A = Q\Lambda Q^*$
- A hermitian matrix is unitarily diagonalizable, with real eigenvalues (because of the Schur factorization, see below)
- A is unitarily diagonalizable \iff A is normal ($A^*A = AA^*$)
- Every square matrix A has a Schur factorization $A = QTQ^*$ with unitary Q and upper-triangular T
- Summary, Eigenvalue-Revealing Factorizations
 - Diagonalization $A = X\Lambda X^{-1}$ (nondefective A)
 - Unitary diagonalization $A = Q\Lambda Q^*$ (normal A)
 - Unitary triangularization (Schur factorization) $A = QTQ^*$ (any A)
Eigenvalue Algorithms

- The most obvious method is ill-conditioned: Find roots of $p_A(\lambda)$
- Instead, compute Schur factorization $A = QTQ^*$ by introducing zeros
- However, this can not be done in a finite number of steps:

 Any eigenvalue solver must be iterative

- To see this, consider a general polynomial of degree m
 \[p(z) = z^m + a_{m-1}z^{m-1} + \cdots + a_1z + a_0 \]
- There is no closed-form expression for the roots of p: (Abel, 1842)

 In general, the roots of polynomial equations higher than fourth degree cannot be written in terms of a finite number of operations

Eigenvalue Algorithms

- (continued) However, the roots of p are the eigenvalues of the companion matrix
 \[
 A = \begin{bmatrix}
 0 & & & -a_0 \\
 1 & 0 & & -a_1 \\
 1 & 0 & & -a_2 \\
 & & \ddots & \vdots \\
 & & 0 & -a_{m-2} \\
 & & 1 & -a_{m-1}
 \end{bmatrix}
 \]
- Therefore, in general we cannot find the eigenvalues of a matrix in a finite number of steps (even in exact arithmetic)
- In practice, algorithms available converge in just a few iterations
Schur Factorization and Diagonalization

- Compute Schur factorization \(A = QTQ^* \) by transforming \(A \) with similarity transformations

\[
Q^*_j \cdots Q^*_2 Q^*_1 A Q^*_1 Q^*_2 \cdots Q^*_j \quad Q^*
\]

which converge to a \(T \) as \(j \to \infty \)

- Note: Real matrices might need complex Schur forms and eigenvalues (or a *real Schur factorization* with \(2 \times 2 \) blocks on diagonal)

- For hermitian \(A \), the sequence converges to a diagonal matrix

Two Phases of Eigenvalues Computations

- General \(A \): First to *upper-Hessenberg* form, then to upper-triangular

\[
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
A \neq A^*
\end{bmatrix}
\quad \rightarrow \quad
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
H
\end{bmatrix}
\quad \rightarrow \quad
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
T
\end{bmatrix}
\]

- Hermitian \(A \): First to *tridiagonal* form, then to diagonal

\[
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
A \neq A^*
\end{bmatrix}
\quad \rightarrow \quad
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
T
\end{bmatrix}
\quad \rightarrow \quad
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
D
\end{bmatrix}
\]