Real Symmetric Matrices

- We will only consider eigenvalue problems for real symmetric matrices
- Then \(A = A^T \in \mathbb{R}^{m \times m} \), \(x \in \mathbb{R}^m \), \(x^* = x^T \), and \(\| x \| = \sqrt{x^T x} \)
- \(A \) then also has
 - real eigenvalues: \(\lambda_1, \ldots, \lambda_m \)
 - orthonormal eigenvectors: \(q_1, \ldots, q_m \)
- Eigenvectors are normalized \(\| q_j \| = 1 \), and sometimes the eigenvalues are ordered in a particular way
- Initial reduction to tridiagonal form assumed
 - Brings cost for typical steps down from \(O(m^3) \) to \(O(m) \)
Rayleigh Quotient

- The Rayleigh quotient of \(x \in \mathbb{R}^m \):
 \[
 r(x) = \frac{x^T Ax}{x^T x}
 \]

- For an eigenvector \(x \), the corresponding eigenvalue is \(r(x) = \lambda \)

- For general \(x \), \(r(x) = \alpha \) that minimizes \(\|Ax - \alpha x\|_2 \)

- \(x \) eigenvector of \(A \) \(\iff \nabla r(x) = 0 \) with \(x \neq 0 \)

- \(r(x) \) is smooth and \(\nabla r(q_j) = 0 \), therefore quadratically accurate:
 \[
 r(x) - r(q_j) = O(\|x - q_j\|^2) \text{ as } x \to q_j
 \]

Power Iteration

- Simple power iteration for largest eigenvalue:

 Algorithm: Power Iteration

 \[
 v^{(0)} = \text{some vector with } \|v^{(0)}\| = 1
 \]

 for \(k = 1, 2, \ldots \)
 \[
 w = Av^{(k-1)} \quad \text{apply } A
 \]
 \[
 v^{(k)} = w / \|w\| \quad \text{normalize}
 \]
 \[
 \lambda^{(k)} = (v^{(k)})^T Av^{(k)} \quad \text{Rayleigh quotient}
 \]

- Termination conditions usually omitted
Convergence of Power Iteration

- Expand initial $v^{(0)}$ in orthonormal eigenvectors q_i, and apply A^k:

$$v^{(0)} = a_1 q_1 + a_2 q_2 + \cdots + a_m q_m$$

$$v^{(k)} = c_k A^k v^{(0)}$$

$$= c_k(a_1 \lambda_1^k q_1 + a_2 \lambda_2^k q_2 + \cdots + a_m \lambda_m^k q_m)$$

$$= c_k \lambda_1^k (a_1 q_1 + a_2 (\lambda_2 / \lambda_1)^k q_2 + \cdots + a_m (\lambda_m / \lambda_1)^k q_m)$$

- If $|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_m| \geq 0$ and $q_1^T v^{(0)} \neq 0$, this gives:

$$\|v^{(k)} - (\pm q_1)\| = O \left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right), \quad |\lambda^{(k)} - \lambda_1| = O \left(\left| \frac{\lambda_2}{\lambda_1} \right|^{2k} \right)$$

- Finds the largest eigenvalue (unless eigenvector orthogonal to $v^{(0)}$)
- Linear convergence, factor $\approx \lambda_2 / \lambda_1$ at each iteration

Inverse Iteration

- Apply power iteration on $(A - \mu I)^{-1}$, with eigenvalues $(\lambda_j - \mu)^{-1}$

Algorithm: Inverse Iteration

$$v^{(0)} = \text{some vector with } \|v^{(0)}\| = 1$$

for $k = 1, 2, \ldots$

- Solve $(A - \mu I) w = v^{(k-1)}$ for w

 $$v^{(k)} = w / \|w\|$$

 $$\lambda^{(k)} = (v^{(k)})^T A v^{(k)}$$

- apply $(A - \mu I)^{-1}$

- normalize

- Rayleigh quotient

- Converges to eigenvector q_j if the parameter μ is close to λ_j:

$$\|v^{(k)} - (\pm q_j)\| = O \left(\left| \frac{\mu - \lambda_j}{\mu - \lambda_K} \right|^k \right), \quad |\lambda^{(k)} - \lambda_j| = O \left(\left| \frac{\mu - \lambda_j}{\mu - \lambda_K} \right|^{2k} \right)$$
Rayleigh Quotient Iteration

- Parameter μ is constant in inverse iteration, but convergence is better for μ close to the eigenvalue
- Improvement: At each iteration, set μ to last computed Rayleigh quotient

Algorithm: Rayleigh Quotient Iteration

- $v^{(0)}$ = some vector with $\|v^{(0)}\| = 1$
- $\lambda^{(0)} = (v^{(0)})^TAv^{(0)}$ = corresponding Rayleigh quotient
- for $k = 1, 2, \ldots$
 - Solve $(A - \lambda^{(k-1)}I)w = v^{(k-1)}$ for w
 - apply matrix
 - $v^{(k)} = w/\|w\|$
 - normalize
 - $\lambda^{(k)} = (v^{(k)})^TAv^{(k)}$
 - Rayleigh quotient

Convergence of Rayleigh Quotient Iteration

- Cubic convergence in Rayleigh quotient iteration:
 $$\|v^{(k+1)} - (\pm q_J)\| = O(\|v^{(k)} - (\pm q_J)\|^3)$$
 and
 $$|\lambda^{(k+1)} - \lambda_J| = O(|\lambda^{(k)} - \lambda_J|^3)$$
- Proof idea: If $v^{(k)}$ is close to an eigenvector, $\|v^{(k)} - q_J\| \leq \epsilon$, then the accurate of the Rayleigh quotient estimate $\lambda^{(k)}$ is $|\lambda^{(k)} - \lambda_J| = O(\epsilon^2)$. One step of inverse iteration then gives
 $$\|v^{(k+1)} - q_J\| = O(|\lambda^{(k)} - \lambda_J| \|v^{(k)} - q_J\|) = O(\epsilon^3)$$
The QR Algorithm

- Remarkably simple algorithm: QR factorize and multiply in reverse order:

Algorithm: “Pure” QR Algorithm

\[
A^{(0)} = A \\
\text{for } k = 1, 2, \ldots \\
Q^{(k)}R^{(k)} = A^{(k-1)} \quad \text{QR factorization of } A^{(k-1)} \\
A^{(k)} = R^{(k)}Q^{(k)} \quad \text{Recombine factors in reverse order}
\]

- With some assumptions, \(A^{(k)}\) converge to a Schur form for \(A\) (diagonal if \(A\) symmetric)
- Similarity transformations of \(A\):

\[
A^{(k)} = R^{(k)}Q^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)}
\]

Unnormalized Simultaneous Iteration

- To understand the QR algorithm, first consider a simpler algorithm
- *Simultaneous Iteration* is power iteration applied to several vectors
- Start with linearly independent \(v_1^{(0)}, \ldots, v_n^{(0)}\)
- We know from power iteration that \(A^k v_1^{(0)}\) converges to \(q_1\)
- With some assumptions, the space \(\langle A^k v_1^{(0)}, \ldots, A^k v_n^{(0)} \rangle\) should converge to \(q_1, \ldots, q_n\)
- Notation: Define initial matrix \(V^{(0)}\) and matrix \(V^{(k)}\) at step \(k\):

\[
V^{(0)} = \begin{bmatrix} v_1^{(0)} & \cdots & v_n^{(0)} \end{bmatrix}, \quad V^{(k)} = A^k V^{(0)} = \begin{bmatrix} v_1^{(k)} & \cdots & v_n^{(k)} \end{bmatrix}
\]
Unnormalized Simultaneous Iteration

- Define well-behaved basis for column space of \(V^{(k)} \) by \(\hat{Q}^{(k)} \hat{R}^{(k)} = V^{(k)} \)

- Make the assumptions:

 - The leading \(n + 1 \) eigenvalues are distinct

 - All principal leading principal submatrices of \(\hat{Q}^T V^{(0)} \) are nonsingular, where columns of \(\hat{Q} \) are \(q_1, \ldots, q_n \)

We then have that the columns of \(\hat{Q}^{(k)} \) converge to eigenvectors of \(A \):

\[
\| q_j^{(k)} - \pm q_j \| = O(C^k)
\]

where \(C = \max_{1 \leq k \leq n} |\lambda_{k+1}|/|\lambda_k| \)

- **Proof.** Textbook / Black board

Simultaneous Iteration

- The matrices \(V^{(k)} = A^k V^{(0)} \) are highly ill-conditioned

- Orthonormalize at each step rather than at the end:

Algorithm: Simultaneous Iteration

```
Pick \( \hat{Q}^{(0)} \in \mathbb{R}^{m \times n} \)
for \( k = 1, 2, \ldots \)

\[
Z = A \hat{Q}^{(k-1)}
\]

\( \hat{Q}^{(k)} \hat{R}^{(k)} = Z \)

Reduced QR factorization of \( Z \)
```

- The column spaces of \(\hat{Q}^{(k)} \) and \(Z^{(k)} \) are both equal to the column space of \(A^k \hat{Q}^{(0)} \), therefore same convergence as before
The QR algorithm is equivalent to simultaneous iteration with $\hat{Q}^{(0)} = I$

Notation: Replace $\hat{R}^{(k)}$ by $R^{(k)}$, and $\hat{Q}^{(k)}$ by $Q^{(k)}$

Simultaneous Iteration:

\[
\begin{align*}
Q^{(0)} &= I \\
Z &= AQ^{(k-1)} \\
Z &= Q^{(k)}R^{(k)} \\
A^{(k)} &= (Q^{(k)})^T AQ^{(k)}
\end{align*}
\]

Unshifted QR Algorithm:

\[
\begin{align*}
A^{(0)} &= A \\
A^{(k-1)} &= Q^{(k)}R^{(k)} \\
A^{(k)} &= R^{(k)}Q^{(k)} \\
Q^{(k)} &= Q^{(1)}Q^{(2)}\cdots Q^{(k)}
\end{align*}
\]

Also define $R^{(k)} = R^{(k)}R^{(k-1)}\cdots R^{(1)}$

Now show that the two processes generate same sequences of matrices

Both schemes generate the QR factorization $A^{(k)} = Q^{(k)}R^{(k)}$ and the projection $A^{(k)} = (Q^{(k)})^T AQ^{(k)}$

Proof. $k = 0$ trivial for both algorithms.

For $k \geq 1$ with simultaneous iteration, $A^{(k)}$ is given by definition, and
\[
A^{k} = AQ^{(k-1)}R^{(k-1)} = Q^{(k)}R^{(k)}R^{(k-1)} = Q^{(k)}R^{(k)}
\]

For $k \geq 1$ with unshifted QR, we have
\[
A^{k} = AQ^{(k-1)}R^{(k-1)} = Q^{(k-1)}A^{(k-1)}R^{(k-1)} = Q^{(k)}R^{(k)}
\]

and
\[
A^{(k)} = (Q^{(k)})^T A^{(k-1)}Q^{(k)} = (Q^{(k)})^T AQ^{(k)}
\]