Lecture 17
Other Eigenvalue Algorithms

MIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson (persson@mit.edu)
November 14, 2007
The Jacobi Algorithm

- Diagonalize 2×2 real symmetric matrix by a *Jacobi rotation*:

$$ J^T \begin{bmatrix} a & d \\ d & b \end{bmatrix} J = \begin{bmatrix} \neq 0 & 0 \\ 0 & \neq 0 \end{bmatrix} $$

where

$$ J = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}, \quad \tan(2\theta) = \frac{2d}{b-a} $$

- Iteratively apply transformation to 2 rows and 2 columns of $A \in \mathbb{R}^{m \times m}$

- Loop over all pairs of rows/columns, quadratic convergence

- $O(m^2)$ steps, $O(m)$ operations per step $\implies O(m^3)$ operation count
The Method of Bisection

- Idea: Search the real line for roots of \(p(x) = \det(A - xI) \)
- Finding roots from coefficients highly unstable, but \(p(x) \) could be computed by elimination
- Important property: Eigenvalues of principal upper-left square submatrices \(A^{(1)}, \ldots, A^{(m)} \) interlace

\[
\lambda_j^{(k+1)} < \lambda_j^{(k)} < \lambda_j^{(k+1)}
\]
The Method of Bisection

- Because of the interlacing property: The number of negative eigenvalues of A equals the number of sign changes in the *Sturm sequence*

 $1, \det(A^{(1)}), \det(A^{(2)}), \ldots, \det(A^{(m)})$

- Shift A to get number of eigenvalues in $(-\infty, b)$ and twice for $[a, b)$

- Three-term recurrence for the determinants:

 $$\det(A^{(k)}) = a_k \det(A^{(k-1)}) - b_{k-1}^2 \det(A^{(k-2)})$$

- With shift xI and $p^{(k)}(x) = \det(A^{(k)} - xI)$:

 $$p^{(k)}(x) = (a_k - x)p^{(k-1)}(x) - b_{k-1}^2 p^{(k-2)}(x)$$

- $O(m\log(\epsilon_{\text{machine}}))$ flops per eigenvalue, always high relative accuracy
The Divide-and-Conquer Algorithm

- Split symmetric tridiagonal T into submatrices:

$$T = \begin{bmatrix} T_1 & \beta \\ \beta & T_2 \end{bmatrix} = \begin{bmatrix} \hat{T}_1 \\ \hat{T}_2 \end{bmatrix} + \begin{bmatrix} \beta & \beta \\ \beta & \beta \end{bmatrix}$$

- The sum of a 2×2 block-diagonal matrix and a rank-one correction

- Split T in equal sizes and compute eigenvalues of \hat{T}_1, \hat{T}_2 recursively

- Solve nonlinear problem to get eigenvalues of T from those of \hat{T}_1, \hat{T}_2
The Divide-and-Conquer Algorithm

- Suppose diagonalizations $\hat{T}_1 = Q_1 D_1 Q_1^T$ and $\hat{T}_2 = Q_2 D_2 Q_2^T$ have been computed. We then have

$$T = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \left(\begin{bmatrix} D_1 & \beta z z^T \\ D_2 \end{bmatrix} \right) \begin{bmatrix} Q_1^T \\ Q_2^T \end{bmatrix}$$

with $z^T = (q_1^T, q_2^T)$, where q_1^T is last row of Q_1 and q_2^T is first row of Q_2.

- This is a similarity transformation \implies Find eigenvalues of diagonal matrix plus rank-one correction
The Divide-and-Conquer Algorithm

- Eigenvalues of $D + ww^T$ are the roots of the rational function

$$f(\lambda) = 1 + \sum_{j=1}^{m} \frac{w_j^2}{d_j - \lambda}$$
The Divide-and-Conquer Algorithm

- Solve the *secular equation* \(f(\lambda) = 0 \) with nonlinear solver
- \(O(m) \) flops per root, \(O(m^2) \) flops for all roots
- Total cost for divide-and-conquer algorithm:

\[
O \left(m^2 + 2 \frac{m^2}{2^2} + 4 \frac{m^2}{4^2} + 8 \frac{m^2}{8^2} + \cdots + m \frac{m^2}{m^2} \right) = O(m^2)
\]

- For computing eigenvalues only, most of the operations are spent in the tridiagonal reduction, and the constant in “Phase 2” is not important
- However, for computing eigenvectors, divide-and-conquer reduces Phase 2 to \(4m^3/3 \) flops compared to \(6m^3 \) for QR