Iterative Methods for Linear Systems

- **Direct methods** for solving $Ax = b$, e.g. Gaussian elimination, compute an exact solution after a finite number of steps (in exact arithmetic)

- **Iterative algorithms** produce a sequence of approximations $x^{(1)}, x^{(2)}, \ldots$ which hopefully converges to the solution, and
 - may require less memory than direct methods
 - may be faster than direct methods
 - may handle special structures (such as sparsity) in a simpler way
Two Classes of Iterative Methods

- **Stationary methods** (or classical iterative methods) finds a splitting \(A = M - K \) and iterates \(x^{(k+1)} = M^{-1}(Kx^{(k)} + b) = Rx^{(k)} + c \)
 - Jacobi, Gauss-Seidel, Successive Overrelaxation (SOR), and Symmetric Successive Overrelaxation (SSOR)

- **Krylov subspace methods** use only multiplication by \(A \) (and possibly by \(A^T \)) and find solutions in the Krylov subspace \(\{b, Ab, A^2b, \ldots, A^{k-1}b\} \)
 - Conjugate Gradient (CG), Generalized Minimal Residual (GMRES), BiConjugate Gradient (BiCG), etc

The Model Poisson Problem

- Test problem for linear solvers: Discretize Poisson's equation in 2-D:
 \[
 - \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 1
 \]
 on a square grid using centered finite difference approximations:
 \[
 4u_{ij} - u_{i-1,j} - u_{i+1,j} - u_{i,j-1} - u_{i,j+1} = h^2
 \]
- Dirichlet conditions \(u = 0 \) on boundaries
- Grid spacing \(h = 1/(n + 1) \)
- Total of \(n^2 \) unknowns \(u_{ij} \)
- A “typical problem” despite the simplicity
The Model Problem in MATLAB

- In MATLAB:

\[
\begin{align*}
 n &= 8; \quad h = \frac{1}{n+1}; \quad e = \text{ones}(n,1); \\
 A1 &= \text{spdiags}([-e, 2*e, -e], -1:1, n, n); \\
 A &= \text{kron}(A1, \text{speye}(n,n)) + \text{kron}(\text{speye}(n,n), A1); \\
 f &= h^2 \times \text{ones}(n^2,1);
\end{align*}
\]

or simply

\[A = \text{delsq}(ext{numgrid}('S', n+2));\]

- Resulting linear system \(Au = f\) is sparse and banded

Eigenvalues of Model Problem

- \(A\) is symmetric positive definite, with eigenvalues \(\lambda_{ij} = \lambda_i + \lambda_j\), \(i, j = 1, \ldots, n\), where

\[
\lambda_k = 2 \left(1 - \cos \frac{\pi k}{n+1} \right)
\]

are eigenvalues of the 1-D Laplace operator

- Largest eigenvalue \(\lambda_n = 2(1 - \cos \frac{\pi n}{n+1}) \approx 4\)

- Smallest eigenvalue \(\lambda_1 = 2(1 - \cos \frac{\pi}{n+1}) \approx \pi^2/(n + 1)^2\)

- Condition number \(\kappa(A) = \lambda_n/\lambda_1 \approx 4(n + 1)^2/\pi^2\)
Stationary Iterative Methods

- Iterative methods for $Ax = b$ that can be written

 $$x^{(k+1)} = Rx^{(k)} + c$$

 with constant R are called *stationary* iterative methods

- A *splitting* of A is a decomposition $A = M - K$ with nonsingular M

- Stationary iterative method from splitting:

 $$Ax = Mx - Kx = b \implies x = M^{-1}Kx + M^{-1}b = Rx + c$$

- The iteration $x^{(k+1)} = Rx^{(k)} + c$ converges to the solution $x = A^{-1}b$ if and only if the spectral radius $\rho(R) < 1$

 - *Proof.* Blackboard

Choosing a Splitting

- Find a splitting $A = M - K$ such that

 1. $Rx = M^{-1}Kx$ and $c = M^{-1}b$ are easy to evaluate
 2. $\rho(R)$ is small

- Example: $M = I$ makes M^{-1} trivial, but probably not $\rho(R)$ small

- Example: $M = A$ gives $K = 0$ and $\rho(R) = \rho(M^{-1}K) = 0$, but expensive M^{-1}

- We will study splittings based on the diagonal and the upper/lower triangular parts of A

 $$A = D - L - U$$
The Jacobi Method

- The simplest splitting is the *Jacobi method*, where $M = D$ and $K = L + U$:
 \[
 x^{(k+1)} = D^{-1} \left((L + U)x^{(k)} + b\right)
 \]

- In words: Solve for x_i from equation i, assuming the other entries fixed

- Implementation of model problem: Trivial in MATLAB, but temporary array required with for-loops. The following code:

  ```matlab
  for i = 1 to n
    for j = 1 to n
      u^{(k+1)}_{i,j} = \left( u^{(k)}_{i-1,j} + u^{(k)}_{i+1,j} + u^{(k)}_{i,j-1} + u^{(k)}_{i,j+1} + h^2 \right) / 4
  
  performs one step of the Jacobi method
  
Convergence of the Jacobi Method

- The following results can be shown: The Jacobi method converges if
  - $A$ is strictly row diagonally dominant: $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$, or
  - $A$ is weakly row diagonally dominant: $|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|$ with strict inequality at least once, and $A$ is *irreducible* (strongly connected graph)

- Our model problem is weakly row diagonally dominant and irreducible, so the Jacobi method converges

- More specifically, the splitting is $A = D - L - U = 4I - (4I - A)$, so $R_J = (4I)^{-1}(4I - A) = I - A/4$ with eigenvalues $1 - \lambda_{ij}/4$, and

  \[
  \rho(R_J) = \max_{i,j} |1 - \lambda_{ij}/4| = |1 - \lambda_{11}/4| = \cos \frac{\pi}{n+1} \approx 1 - \frac{\pi^2}{2(n+1)^2}
  \]

- Therefore, it converges with a constant factor every $O(n^2)$ iteration
The Gauss-Seidel Method

- In the Gauss-Seidel method, we choose $M = D - L$ (which is triangular and therefore easy to invert) and iterate:

$$x^{(k+1)} = (D - L)^{-1}(Ux^{(k)} + b)$$

- In words: While looping over the equations, use the most recent values $x_i$

- Implementation of model problem: Still easy in MATLAB using \\, and for-loops are actually easier than Jacobi since no temporary array:

  ```matlab
 for i = 1 to n
 for j = 1 to n
 u_{i,j}^{(k+1)} = (u_{i-1,j}^{(k+1)} + u_{i+1,j}^{(k+1)} + u_{i,j-1}^{(k+1)} + u_{i,j+1}^{(k+1)} + h^2)/4
  ```

- The order matters! For Cartesian grids, the red-black ordering updates in a checkerboard pattern

The Successive Overrelaxation Method

- In the Successive overrelaxation method, or SOR, the Gauss-Seidel step is extrapolated a factor $\omega$:

$$x^{(k+1)} = \omega \tilde{x}_i^{(k+1)} + (1 - \omega)x_i^{(k)}$$

where $\tilde{x}$ is the Gauss-Seidel iterate

- $\omega = 1$: Gauss-Seidel, $\omega > 1$: overrelaxation, $\omega < 1$: underrelaxation

- In matrix form:

$$x^{(k+1)} = (D - \omega L)^{-1}(\omega U + (1 - \omega)D)x^{(k)} + \omega(D - \omega L)^{-1}b$$
Convergence of Gauss-Seidel and SOR

- It can be shown that with a symmetric positive definite matrix $A$, Gauss-Seidel and SOR converges with $0 < \omega < 2$.
- In general hard to choose $\omega$ for SOR, but if spectral radius of the Jacobi method $\rho(R_J)$ is known, the optimal $\omega = 2/ \left(1 + \sqrt{1 - \rho(R_J)}\right)$.
- For the model problem with red-black ordering:
  - Gauss-Seidel is twice as fast as Jacobi.
  - For SOR, the optimal $\omega = 2 / \left(1 + \sin \frac{\pi}{n+1}\right)$, giving a spectral radius
    \[ \rho(R_{SOR}) \approx 1 - \frac{2\pi}{n+1} \]
    which is $n$ times faster than Jacobi/Gauss-Seidel, or a constant factor improvement every $O(n)$ iteration.

The Symmetric Successive Overrelaxation Method

- To obtain an iteration matrix similar to a symmetric matrix, apply two SOR steps in opposite directions:
  \[ x^{(k+1)} = B_1 B_2 x^{(k)} + \omega (2 - \omega) (D - \omega U)^{-1} D (D - \omega L)^{-1} b, \]
  \[ B_1 = (D - \omega U)^{-1} (\omega L + (1 - \omega) D) \]
  \[ B_2 = (D - \omega L)^{-1} (\omega U + (1 - \omega) D) \]
- This Symmetric successive overrelaxation method, or SSOR, is useful as preconditioner for symmetric matrices.
- By itself not very different from two steps of SOR.