Iterative Methods for Linear Systems

- **Direct methods** for solving \(Ax = b\), e.g., Gaussian elimination, compute an exact solution after a finite number of steps (in exact arithmetic).
- **Iterative algorithms** produce a sequence of approximations \(x^{(1)}, x^{(2)}, \ldots\) which hopefully converges to the solution, and
 - may require less memory than direct methods
 - may be faster than direct methods
 - may handle special structures (such as sparsity) in a simpler way

The Model Poisson Problem

- Test problem for linear solvers: Discretize Poisson's equation in 2-D:
 \[-\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = 1\]
on a square grid using centered finite difference approximations:
 \[4u_{ij} - u_{i-1,j} - u_{i+1,j} - u_{i,j-1} - u_{i,j+1} = h^2\]
- Dirichlet conditions \(u = 0\) on boundaries
- Grid spacing \(h = 1/(n+1)\)
- Total of \(n^2\) unknowns \(u_{ij}\)
- A "typical problem" despite the simplicity

Eigenvalues of Model Problem

- \(A\) is symmetric positive definite, with eigenvalues \(\lambda_{ij} = \lambda_i + \lambda_j\), \(i, j = 1, \ldots, n\), where
 \[\lambda_k = 2 \left(1 - \cos \frac{\pi k}{n+1}\right)\]
 are eigenvalues of the 1-D Laplace operator
- Largest eigenvalue \(\lambda_n = 2(1 - \cos \frac{\pi}{n+1}) \approx 4\)
- Smallest eigenvalue \(\lambda_1 = 2(1 - \cos \frac{\pi}{n+1}) \approx \pi^2/(n+1)^2\)
- Condition number \(\kappa(A) = \lambda_n/\lambda_1 \approx 4(n+1)^2/\pi^2\)
Stationary Iterative Methods

- Iterative methods for $Ax = b$ can be written
 \[x^{(k+1)} = Rx^{(k)} + c \]
 with constant R are called stationary iterative methods
- A splitting of A is a decomposition $A = M - K$ with nonsingular M
- Stationary iterative method from splitting:
 \[Ax = Mx - Kx = b \iff x = M^{-1}Kx + M^{-1}b = Rx + c \]
- The iteration $x^{(k+1)} = Rx^{(k)} + c$ converges to the solution $x = A^{-1}b$ if and only if the spectral radius $\rho(R) < 1$
 - Proof. Blackboard

Choosing a Splitting

- Find a splitting $A = M - K$ such that
 1. $Rx = M^{-1}Kx$ and $c = M^{-1}b$ are easy to evaluate
 2. $\rho(R)$ is small
- Example: $M = I$ makes M^{-1} trivial, but probably not $\rho(R)$ small
- Example: $M = A$ gives $K = 0$ and $\rho(R) = \rho(M^{-1}K) = 0$, but expensive M^{-1}
- We will study splittings based on the diagonal and the upper/lower triangular parts of A
 \[A = D - L - U \]

The Jacobi Method

- The simplest splitting is the Jacobi method, where $M = D$ and $K = L + U$
 \[x^{(k+1)} = D^{-1}((L + U)x^{(k)} + b) \]
- In words: Solve for x_i from equation i, assuming the other entries fixed
- Implementation of model problem: Trivial in MATLAB, but temporary array required for for-loops. The following code:
 for $i = 1$ to n
 for $j = 1$ to n
 \[u_{i,j}^{(k+1)} = (u_{i-1,j}^{(k)} + u_{i+1,j}^{(k)} + u_{i,j-1}^{(k)} + u_{i,j+1}^{(k)} + h^2)/4 \]
 performs one step of the Jacobi method

Convergence of the Jacobi Method

- The following results can be shown: The Jacobi method converges if
 - A is strictly row diagonally dominant: $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$, or
 - A is weakly row diagonally dominant: $|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|$ with strict inequality at least once, and A is irreducible (strongly connected graph)
- Our model problem is weakly row diagonally dominant and irreducible, so the Jacobi method converges
- More specifically, the splitting is $A = D - L - U = 4I - (4I - A)$, so $R_3 = (4I)^{-1}(4I - A) = I - A/4$ with eigenvalues $1 - \lambda_{ij}/4$, and $\rho(R_3) = \max_{i,j} |1 - \lambda_{ij}/4| = |1 - \lambda_{11}/4| = \cos \frac{\pi}{n+1} \approx 1 - \frac{\pi^2}{2(n+1)^2}$
- Therefore, it converges with a constant factor every $O(n^2)$ iteration

The Gauss-Seidel Method

- In the Gauss-Seidel method, we choose $M = D - L$ (which is triangular and therefore easy to invert) and iterate:
 \[x^{(k+1)} = (D - L)^{-1}(Ux^{(k)} + b) \]
- In words: While looping over the equations, use the most recent values x_i
- Implementation of model problem: Still easy in MATLAB using \(\setminus \), and for-loops are actually easier than Jacobi since no temporary array:
 for $i = 1$ to n
 for $j = 1$ to n
 \[u_{i,j}^{(k+1)} = (u_{i-1,j}^{(k)} + u_{i+1,j}^{(k)} + u_{i,j-1}^{(k)} + u_{i,j+1}^{(k)} + h^2)/4 \]
 The order matters! For Cartesian grids, the red-black ordering updates in a checkerboard pattern

The Successive Overrelaxation Method

- In the Successive overrelaxation method, or SOR, the Gauss-Seidel step is extrapolated a factor ω:
 \[x^{(k+1)} = \omega x_i^{(k+1)} + (1 - \omega)x_i^{(k)} \]
 where x_i is the Gauss-Seidel iterate
- $\omega = 1$: Gauss-Seidel, $\omega > 1$: overrelaxation, $\omega < 1$: underrelaxation
- In matrix form:
 \[x^{(k+1)} = (D - \omega L)^{-1}(\omega U + (1 - \omega)D)x^{(k)} + \omega(D - \omega L)^{-1}b \]
Convergence of Gauss-Seidel and SOR

- It can be shown that with a symmetric positive definite matrix A, Gauss-Seidel and SOR converges with $0 < \omega < 2$

- In general hard to choose ω for SOR, but if spectral radius of the Jacobi method $\rho(R_J)$ is known, the optimal $\omega = 2 / \left(1 + \sqrt{1 - \rho(R_J)}\right)$

- For the model problem with red-black ordering:
 - Gauss-Seidel is twice as fast as Jacobi
 - For SOR, the optimal $\omega = 2 / \left(1 + \sin \frac{\pi}{n+1}\right)$, giving a spectral radius

$$\rho(R_{SOR}) \approx 1 - \frac{2\pi}{n+1}$$

which is n times faster than Jacobi/Gauss-Seidel, or a constant factor improvement every $O(n)$ iteration

The Symmetric Successive Overrelaxation Method

- To obtain an iteration matrix similar to a symmetric matrix, apply two SOR steps in opposite directions:

$$x^{(k+1)} = B_1 B_2 x^{(k)} + \omega (2 - \omega) (D - \omega U)^{-1} D (D - \omega L)^{-1} b,$$

$$B_1 = (D - \omega U)^{-1} (\omega L + (1 - \omega) D)$$

$$B_2 = (D - \omega L)^{-1} (\omega U + (1 - \omega) D)$$

- This Symmetric successive overrelaxation method, or SSOR, is useful as preconditioner for symmetric matrices

- By itself not very different from two steps of SOR