Sparse vs. Dense Matrices

- A *sparse matrix* is a matrix with enough zeros that it is worth taking advantage of them [Wilkinson]

- A *structured matrix* has enough structure that it is worthwhile to use it (e.g. Toeplitz)

- A *dense matrix* is neither sparse nor structured
MATLAB Sparse Matrices: Design Principles

- Most operations should give the same results for sparse and full matrices.
- Sparse matrices are never created automatically, but once created they propagate.
- Performance is important – but usability, simplicity, completeness, and robustness are more important.
- Storage for a sparse matrix should be $O(\text{nonzeros})$.
- Time for a sparse operation should be close to $O(\text{flops})$.

Data Structures for Matrices

Full:
- Storage: Array of real (or complex) numbers
- Memory: $\text{nrows} \times \text{ncols}$

Sparse:
- Compressed column storage
- Memory: About $1.5 \times \text{nnz} + 0.5 \times \text{ncols}$

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>0</td>
<td>53</td>
</tr>
<tr>
<td>0</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>26</td>
<td>0</td>
</tr>
</tbody>
</table>
```

```
double *A
```

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
</tr>
</tbody>
</table>
```

```
double *Pr
```

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
```

```
int *Ir
```

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
```

```
int *Jc
```

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
```
Compressed Column Format - Observations

- Element look-up: $O(\log \#\text{elements in column})$ time
- Insertion of new nonzero very expensive
- Sparse vector = Column vector (not Row vector)

Graphs and Sparsity: Cholesky Factorization

Fill: New nonzeros in factor

Symmetric Gaussian
Elimination:

$$\text{for } j = 1 \text{ to } N$$

Add edges between j’s higher-numbered neighbors

$G(A)$ $G^+(A)$
Permutations of the 2-D Model Problem

- 2-D Model Problem: Poisson's Equation on $n \times n$ finite difference grid
- Total number of unknowns $n^2 = N$
- Theoretical results for the fill-in:
 - With natural permutation: $O(N^{3/2})$ fill
 - With any permutation: $\Omega(N \log N)$ fill
 - With a nested dissection permutation: $O(N \log N)$ fill

Nested Dissection Ordering

- A separator in a graph G is a set S of vertices whose removal leaves at least two connected components
- A nested dissection ordering for an N-vertex graph G numbers its vertices from 1 to N as follows:
 - Find a separator S, whose removal leaves connected components T_1, T_2, \ldots, T_k
 - Number the vertices of S from $N - |S| + 1$ to N
 - Recursively, number the vertices of each component: T_1 from 1 to $|T_1|$, T_2 from $|T_1| + 1$ to $|T_1| + |T_2|$, etc
 - If a component is small enough, number it arbitrarily
- It all boils down to finding good separators!
Heuristic Fill-Reducing Matrix Permutations

- Banded orderings (Reverse Cuthill-McKee, Sloan, etc):
 - Try to keep all nonzeros close to the diagonal
 - Theory, practice: Often wins for “long, thin” problems

- Minimum degree:
 - Eliminate row/col with fewest nonzeros, add fill, repeat
 - Hard to implement efficiently – current champion is “Approximate Minimum Degree” [Amestoy, Davis, Duff]
 - Theory: Can be suboptimal even on 2-D model problem
 - Practice: Often wins for medium-sized problems

- Nested dissection:
 - Find a separator, number it last, proceed recursively
 - Theory: Approximately optimal separators \(\implies\) approximately optimal fill and flop count
 - Practice: Often wins for very large problems

- The best modern general-purpose orderings are ND/MD hybrids
Fill-Reducing Permutations in Matlab

- Reverse Cuthill-McKee:
 - \(p = \text{symrcm}(A); \)
 - Symmetric permutation: \(A(p, p) \) often has smaller bandwidth than \(A \)

- Symmetric approximate minimum degree:
 - \(p = \text{symamd}(A); \)
 - Symmetric permutation: \(\text{chol}(A(p, p)) \) sparser than \(\text{chol}(A) \)

- Nonsymmetric approximate minimum degree:
 - \(p = \text{colamd}(A); \)
 - Column permutation: \(\text{lu}(A(:, p)) \) sparser than \(\text{lu}(A) \)

- Symmetric nested dissection:
 - Not built into MATLAB, several versions in the MESHPART toolbox

Complexity of Direct Methods

- Time and space to solve any problem on any well-shaped finite element mesh with \(N \) nodes:

<table>
<thead>
<tr>
<th></th>
<th>1-D</th>
<th>2-D</th>
<th>3-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space (fill):</td>
<td>(O(N))</td>
<td>(O(N \log N))</td>
<td>(O(N^{4/3}))</td>
</tr>
<tr>
<td>Time (flops):</td>
<td>(O(N))</td>
<td>(O(N^{3/2}))</td>
<td>(O(N^2))</td>
</tr>
</tbody>
</table>