Preconditioners for Linear Systems

- Main idea: Instead of solving
 \[Ax = b \]
 solve, using a nonsingular \(m \times m \) preconditioner \(M \),
 \[M^{-1}Ax = M^{-1}b \]
 which has the same solution \(x \)
- Convergence properties based on \(M^{-1}A \) instead of \(A \)
- Trade-off between the cost of applying \(M^{-1} \) and the improvement of the convergence properties. Extreme cases:
 - \(M = A \), perfect conditioning of \(M^{-1}A = I \), but expensive \(M^{-1} \)
 - \(M = I \), “do nothing” \(M^{-1} = I \), but no improvement of \(M^{-1}A = A \)

Preconditioned Conjugate Gradients

To keep symmetry, solve \((C^{-1}AC^{-1})x = C^{-1}b\) with \(CC^{-1} = M \).

Can be written in terms of \(M^{-1} \) only, without reference to \(C \):

Algorithm: Preconditioned Conjugate Gradients Method

\[
\begin{align*}
x_0 &= 0, \quad r_0 = b, \quad p_0 = M^{-1}r_0, \quad z_0 = p_0 \\
\text{for } n &= 1, 2, 3, \ldots \\
\alpha_n &= (r_{n-1}^Tz_{n-1})/(p_{n-1}^TAp_{n-1}) \quad \text{step length} \\
x_n &= x_{n-1} + \alpha_np_{n-1} \quad \text{approximate solution} \\
r_n &= r_{n-1} - \alpha_nAp_{n-1} \quad \text{residual} \\
z_n &= M^{-1}r_n \quad \text{preconditioning} \\
\beta_n &= (r_n^Tz_n)/(r_{n-1}^Tz_{n-1}) \quad \text{improvement this step} \\
p_n &= z_n + \beta_np_{n-1} \quad \text{search direction}
\end{align*}
\]

Commonly Used Preconditioners

- A preconditioner should “approximately solve” the problem \(Ax = b \)
- Jacobi preconditioning - \(M = \text{diag}(A) \), very simple and cheap, might improve certain problems but usually insufficient
- Block-Jacobi preconditioning - Use block-diagonal instead of diagonal. Another variant is using several diagonals (e.g. tridiagonal)
- Classical iterative methods - Precondition by applying one step of Jacobi, Gauss-Seidel, SOR, or SSOR
- Incomplete factorizations - Perform Gaussian elimination but ignore fill, results in approximate factors \(A \approx LU \) or \(A \approx RT_2R \) (more later)
- Coarse-grid approximations - For a PDE discretized on a grid, a preconditioner can be formed by transferring the solution to a coarser grid, solving a smaller problem, then transferring back (multigrid)

Incomplete Cholesky Factorization (IC, ILU)

- Allow one or more “levels of fill”
 - Unpredictable storage requirements
- Allow fill whose magnitude exceeds a “drop tolerance”
 - May get better approximate factors than levels of fill
 - Unpredictable storage requirements
 - Choice of tolerance is ad hoc
- Partial pivoting (for nonsymmetric \(A \))
- “Modified ILU” (MIC): Add dropped fill to diagonal of \(U \) or \(R \)
 - \(A \) and \(RT_2R \) have same row sums
 - Good in some PDE contexts

Incomplete Cholesky and ILU: Variants

- Compute factors of \(A \) by Gaussian elimination, but ignore fill
- Preconditioner \(B = RT_2R \approx A \), not formed explicitly
- Compute \(B^{-1}z \) by triangular solves in time \(O(\text{nnz}(A)) \)
- Total storage is \(O(\text{nnz}(A)) \), static data structure
- Either symmetric (IC) or nonsymmetric (ILU)
Incomplete Cholesky and ILU: Issues

- Choice of parameters
 - Good: Smooth transition from iterative to direct methods
 - Bad: Very ad hoc, problem-dependent
 - Trade-off: Time per iteration vs # of iterations (more fill → more time but fewer iterations)

- Effectiveness
 - Condition number usually improves (only) by constant factor (except MIC for some problems from PDEs)
 - Still, often good when tuned for a particular class of problems

- Parallelism
 - Triangular solves are not very parallel
 - Reordering for parallel triangular solve by graph coloring

Complexity of Linear Solvers

- Time to solve the Poisson model problem on regular mesh with \(N \) nodes:

<table>
<thead>
<tr>
<th>Solver</th>
<th>1-D</th>
<th>2-D</th>
<th>3-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse Cholesky</td>
<td>(O(N))</td>
<td>(O(N^{1.5}))</td>
<td>(O(N^2))</td>
</tr>
<tr>
<td>CG, exact arith.</td>
<td>(O(N^2))</td>
<td>(O(N^2))</td>
<td>(O(N^2))</td>
</tr>
<tr>
<td>CG, no precond.</td>
<td>(O(N^2))</td>
<td>(O(N^{1.5}))</td>
<td>(O(N^{1.33}))</td>
</tr>
<tr>
<td>CG, modified IC</td>
<td>(O(N^{1.5}))</td>
<td>(O(N^{1.25}))</td>
<td>(O(N^{1.17}))</td>
</tr>
<tr>
<td>Multigrid</td>
<td>(O(N))</td>
<td>(O(N))</td>
<td>(O(N))</td>
</tr>
</tbody>
</table>