Lecture 23
Arnoldi/Lanczos Iterations

MIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson (persson@mit.edu)
December 5, 2007
The Arnoldi Iteration

- The Arnoldi process reduces a general, nonsymmetric A to Hessenberg form by similarity transforms: $A = QHQ^*$
- Allows for reduced factorizations by a Gram-Schmidt-style iteration instead of Householder reflections
- Let Q_n be the $m \times n$ matrix with the first n columns of Q, and consider the first n columns of $AQ = QH$, or $AQ_n = Q_{n+1}\tilde{H}_n$:

\[
\begin{bmatrix}
A \\
q_1 & \cdots & q_n
\end{bmatrix}
\begin{bmatrix}
q_1 \\
\cdots \\
q_n
\end{bmatrix}
=
\begin{bmatrix}
q_1 \\
\cdots \\
q_{n+1}
\end{bmatrix}
\begin{bmatrix}
h_{11} & \cdots & h_{1n} \\
h_{21} \\
\vdots \\
h_{n+1,n}
\end{bmatrix}
\]
The Arnoldi Algorithm

- The \(n \)th column of \(AQ_n = Q_{n+1} \tilde{H}_n \) gives

\[
AQ_n = h_{1n}q_1 + \cdots + h_{nn}q_n + h_{n+1,n}q_{n+1}
\]

which can be used to compute \(q_{n+1} \) similarly to modified Gram-Schmidt:

Algorithm: Arnoldi Iteration

\[
b = \text{arbitrary}, \quad q_1 = b / \|b\| \\
\text{for } n = 1, 2, 3, \ldots \\
\quad v = AQ_n \\
\quad \text{for } j = 1 \text{ to } n \\
\quad \quad h_{jn} = q_j^*v \\
\quad \quad v = v - h_{jn}q_j \\
\quad h_{n+1,n} = \|v\| \\
\quad q_{n+1} = v / h_{n+1,n}
\]
The vectors q_j from Arnoldi are orthonormal bases of the successive Krylov subspaces:

$$K_n = \langle b, Ab, \ldots, A^{n-1}b \rangle = \langle q_1, q_2, \ldots, q_n \rangle \subseteq \mathbb{C}^m$$

Q_n is the reduced QR factorization $K_n = Q_nR_n$ of the Krylov matrix:

$$K_n = \begin{bmatrix} b & Ab & \cdots & A^{n-1}b \end{bmatrix}$$

The projection of A onto this space gives $n \times n$ Hessenberg matrix $H_n = Q_n^*AQ_n$, whose eigenvalues may be good approximations of A's
Symmetric Matrices and the Lanczos Iteration

- For symmetric A, H_n reduces to tridiagonal T_n, and q_{n+1} can be computed by a three-term recurrence:

$$Aq_n = \beta_{n-1}q_{n-1} + \alpha_n q_n + \beta_n q_{n+1}$$

Algorithm: Lanczos Iteration

- $\beta_0 = 0$, $q_0 = 0$, $b =$ arbitrary, $q_1 = b / \|b\|$
- **for** $n = 1, 2, 3, \ldots$
 - $v = Aq_n$
 - $\alpha_n = q_n^T v$
 - $v = v - \beta_{n-1}q_{n-1} - \alpha_n q_n$
 - $\beta_n = \|v\|$
 - $q_{n+1} = v / \beta_n$