Projectors

A projector is a square matrix P that satisfies

$$P^2 = P$$

Not necessarily an orthogonal projector (more later)

If $v \in \text{range}(P)$, then $Pv = v$

- Since with $v = Px$, $Pv = P^2x = Px = v$

Projection along the line $Pv - v \in \text{null}(P)$

- Since $P(Pv - v) = P^2v - Pv = 0$

Complementary Projectors

The matrix $I - P$ is the complementary projector to P

$I - P$ projects on the nullspace of P:
- If $Pv = 0$, then $(I - P)v = v$, so $\text{null}(P) \subseteq \text{range}(I - P)$
- But for any v, $(I - P)v = v - Pv \in \text{null}(P)$, so $\text{range}(I - P) \subseteq \text{null}(P)$
- Therefore

$$\text{range}(I - P) = \text{null}(P)$$

and

$$\text{null}(I - P) = \text{range}(P)$$

Complementary Subspaces

For a projector P,

$$\text{null}(I - P) \cap \text{null}(P) = \{0\}$$

or

$$\text{range}(P) \cap \text{null}(P) = \{0\}$$

A projector separates \mathbb{C}^m into two spaces S_1, S_2, with $\text{range}(P) = S_1$ and $\text{null}(P) = S_2$

P is the projector onto S_1 along S_2

Orthogonal Projectors

- An orthogonal projector projects onto S_1 along S_2, with S_1, S_2 orthogonal
- A projector P is orthogonal $\iff P = P^*$
- Proof. Textbook / Black board

Projection with Orthonormal Basis

- Reduced SVD gives projector for orthonormal columns \hat{Q}:

$$P = \hat{Q}\hat{Q}^*$$

- Complement $I - \hat{Q}\hat{Q}^*$ also orthogonal, projects onto space orthogonal to $\text{range}(\hat{Q})$
- Special case 1: Rank-1 Orthogonal Projector (gives component in direction q)

$$P_q = qq^*$$

- Special case 2: Rank $m - 1$ Orthogonal Projector (eliminates component in direction q)

$$P_{\perp q} = I - qq^*$$
Projection with Arbitrary Basis

- Project v to $y \in \text{range}(A)$. Then
 $$y - v \perp \text{range}(A), \text{ or } a_j^*(y - v) = 0, \forall j$$
- Set $y = Ax$:
 $$a_j^*(Ax - v) = 0, \forall j \iff A^*(Ax - v) = 0 \iff A^*Ax = A^*v$$
- A^*A is nonsingular, so
 $$x = (A^*A)^{-1}A^*v$$
- Finally, we are interested in the projection $y = Ax = A(A^*A)^{-1}A^*v$, giving the orthogonal projector
 $$P = A(A^*A)^{-1}A^*$$

The QR Factorization - Main Idea

- Find orthonormal vectors that span the successive spaces spanned by the columns of A:
 $$\langle a_1 \rangle \subseteq \langle a_1, a_2 \rangle \subseteq \langle a_1, a_2, a_3 \rangle \subseteq \ldots$$
- This means that (for full rank A),
 $$\langle q_1, q_2, \ldots, q_j \rangle = \langle a_1, a_2, \ldots, a_j \rangle, \text{ for } j = 1, \ldots, n$$

The QR Factorization - Matrix Form

- In matrix form, $\langle q_1, q_2, \ldots, q_j \rangle = \langle a_1, a_2, \ldots, a_j \rangle$ becomes
 $$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{21} & r_{22} & \cdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ r_{n1} & \cdots & r_{nn} \end{bmatrix}$$
 or
 $$A = \tilde{Q}\tilde{R}$$
- This is the reduced QR factorization
- Add orthogonal extension to \tilde{Q} and add rows to \tilde{R} to obtain the full QR factorization

The Full QR Factorization

- Let A be an $m \times n$ matrix. The full QR factorization of A is the factorization $A = QR$, where
 $$Q \text{ is } m \times m \text{ unitary}$$
 $$R \text{ is } m \times n \text{ upper-triangular}$$
 $$A = \begin{bmatrix} Q & R \end{bmatrix}$$

The Reduced QR Factorization

- A more compact representation is the Reduced QR Factorization $A = \tilde{Q}\tilde{R}$, where (for $m \geq n$)
 $$\tilde{Q} \text{ is } m \times n \text{ and } \tilde{R} \text{ is } m \times n$$
 $$A = \begin{bmatrix} \tilde{Q} & \tilde{R} \end{bmatrix}$$

Gram-Schmidt Orthogonalization

- Find new q_j orthogonal to q_1, \ldots, q_{j-1} by subtracting components along previous vectors
 $$v_j = a_j - (q_1^*a_j)q_1 - (q_2^*a_j)q_2 - \cdots - (q_{j-1}^*a_j)q_{j-1}$$
- Normalize to get $q_j = v_j / \|v_j\|$
- We then obtain a reduced QR factorization $A = \hat{Q}\hat{R}$, with
 $$r_{ij} = q_i^*a_j, \quad (i \neq j)$$
 and
 $$|r_{jj}| = \|a_j - \sum_{i=1}^{j-1} r_{ij}q_i\|_2$$
Classical Gram-Schmidt

- Straight-forward application of Gram-Schmidt orthogonalization
- Numerically unstable

Algorithm: Classical Gram-Schmidt

for $j = 1$ to n

 $v_j = a_j$

 for $i = 1$ to $j - 1$

 $r_{ij} = q_i^* a_j$

 $v_j = v_j - r_{ij} q_i$

 $r_{jj} = \|v_j\|_2$

 $q_j = v_j / r_{jj}$

Existence and Uniqueness

- Every $A \in \mathbb{C}^{m \times n}$ ($m \geq n$) has a full QR factorization and a reduced QR factorization

 \textbf{Proof.} For full rank A, Gram-Schmidt proves existence of $A = \hat{Q}\hat{R}$.

 Otherwise, when $v_j = 0$ choose arbitrary vector orthogonal to previous q_i.

 For full QR, add orthogonal extension to \hat{Q} and zero rows to \hat{R}.

- Each $A \in \mathbb{C}^{m \times n}$ ($m \geq n$) of full rank has unique $A = \hat{Q}\hat{R}$ with $r_{jj} > 0$

 \textbf{Proof.} Again Gram-Schmidt, $r_{jj} > 0$ determines the sign