Lecture 8 - Floating Point Arithmetic, The IEEE Standard

MIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson (persson@mit.edu)
October 3, 2007

Floating Point Formats

- Scientific notation:
 \[-1.602 \times 10^{-19} \]
 \[\text{sign} \quad \text{significand} \quad \text{base} \quad \text{exponent} \]

- Floating point representation
 \[\pm \left(d_0 + d_1 \beta^{-1} + \ldots + d_{p-1} \beta^{-(p-1)} \right) \beta^e, \quad 0 \leq d_i < \beta \]
 with base \(\beta\) and precision \(p\)

- Exponent range \([e_{\text{min}}, e_{\text{max}}]\)

- Normalized if \(d_0 \neq 0\) (use \(e = e_{\text{min}} - 1\) to represent 0)
Floating Point Numbers

- The gaps between adjacent numbers scale with the size of the numbers
- Relative resolution given by *machine epsilon*, \(\epsilon_{\text{machine}} = .5 \beta^{1-p} \)
- For all \(x \), there exists a floating point \(x' \) such that \(|x - x'| \leq \epsilon_{\text{machine}} |x| \)
- Example: \(\beta = 2, p = 3, \epsilon_{\text{min}} = -1, \epsilon_{\text{max}} = 2 \)

Special Quantities

- \(\pm \infty \) is returned when an operation overflows
- \(x/ \pm \infty = 0 \) for any number \(x \), \(x/0 = \pm \infty \) for any nonzero number \(x \)
- Operations with infinity are defined as limits, e.g.
 \[
 4 - \infty = \lim_{x \to \infty} 4 - x = -\infty
 \]
- NaN (Not a Number) is returned when the an operation has no well-defined finite or infinite result
- Examples: \(\infty - \infty, \infty/\infty, 0/0, \sqrt{-1}, \text{NaN} \odot x \)
Denormalized Numbers

- With normalized significand there is a “gap” between 0 and $\beta^{e_{\min}}$.
- This can result in $x - y = 0$ even though $x \neq y$, and code fragments like
 \[
 \text{if } x \neq y \text{ then } z = 1/(x - y)\]
 might break.
- Solution: Allow non-normalized significand when the exponent is e_{\min}.
- This \textit{gradual underflow} guarantees that
 \[
 x = y \iff x - y = 0
 \]

IEEE Single Precision

- 1 sign bit, 8 exponent bits, 23 significand bits:

 \[
 \begin{array}{|c|c|c|c|c|}
 \hline
 S & E & M \\
 \hline
 0 & 00000000 & 00000000000000000000000000000000 \\
 \hline
 \end{array}
 \]

- Represented number:
 \[
 (-1)^S \times 1.M \times 2^{E-127}
 \]

- Special cases:

 \[
 \begin{array}{|c|c|c|c|}
 \hline
 & E = 0 & 0 < E < 255 & E = 255 \\
 \hline
 M = 0 & \pm 0 & \text{Powers of 2} & \pm \infty \\
 \hline
 M \neq 0 & \text{Denormalized} & \text{Ordinary numbers} & \text{NaN} \\
 \hline
 \end{array}
 \]
IEEE Single Precision, Examples

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>M</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11111111</td>
<td>00000100000000000000000000000000</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>11111111</td>
<td>001000100010010101010101010101010</td>
<td>NaN</td>
</tr>
<tr>
<td>0</td>
<td>11111111</td>
<td>00000000000000000000000000000000</td>
<td>∞</td>
</tr>
<tr>
<td>0</td>
<td>10000000</td>
<td>10100000000000000000000000000000</td>
<td>$+1 \cdot 2^{129-127} \cdot 1.101 = 6.5$</td>
</tr>
<tr>
<td>0</td>
<td>10000000</td>
<td>00000000000000000000000000000000</td>
<td>$+1 \cdot 2^{128-127} \cdot 1.0 = 2$</td>
</tr>
<tr>
<td>0</td>
<td>00000001</td>
<td>00000000000000000000000000000000</td>
<td>$+1 \cdot 2^{1-127} \cdot 1.0 = 2^{-126}$</td>
</tr>
<tr>
<td>0</td>
<td>00000000</td>
<td>10000000000000000000000000000000</td>
<td>$+1 \cdot 2^{-126} \cdot 0.1 = 2^{-127}$</td>
</tr>
<tr>
<td>0</td>
<td>00000000</td>
<td>0000000000000000000000000000000001</td>
<td>$+1 \cdot 2^{-126} \cdot 2^{-23} = 2^{-149}$</td>
</tr>
<tr>
<td>0</td>
<td>00000000</td>
<td>0000000000000000000000000000000000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>00000000</td>
<td>0000000000000000000000000000000000</td>
<td>-0</td>
</tr>
<tr>
<td>1</td>
<td>10000001</td>
<td>1010000000000000000000000000000000</td>
<td>$-1 \cdot 2^{129-127} \cdot 1.101 = -6.5$</td>
</tr>
<tr>
<td>1</td>
<td>11111111</td>
<td>0000000000000000000000000000000000</td>
<td>$-\infty$</td>
</tr>
</tbody>
</table>

IEEE Floating Point Data Types

<table>
<thead>
<tr>
<th></th>
<th>Single precision</th>
<th>Double precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significand size (p)</td>
<td>24 bits</td>
<td>53 bits</td>
</tr>
<tr>
<td>Exponent size</td>
<td>8 bits</td>
<td>11</td>
</tr>
<tr>
<td>Total size</td>
<td>32 bits</td>
<td>64 bits</td>
</tr>
<tr>
<td>e_{max}</td>
<td>+127</td>
<td>+1023</td>
</tr>
<tr>
<td>e_{min}</td>
<td>-126</td>
<td>-1022</td>
</tr>
<tr>
<td>Smallest normalized</td>
<td>$2^{-126} \approx 10^{-38}$</td>
<td>$2^{-1022} \approx 10^{-308}$</td>
</tr>
<tr>
<td>Largest normalized</td>
<td>$2^{127} \approx 10^{38}$</td>
<td>$2^{1023} \approx 10^{308}$</td>
</tr>
<tr>
<td>$\epsilon_{\text{machine}}$</td>
<td>$2^{-24} \approx 6 \cdots 10^{-8}$</td>
<td>$2^{-53} \approx 10^{-16}$</td>
</tr>
</tbody>
</table>
Floating Point Arithmetic

- Define $\text{fl}(x)$ as the closest floating point approximation to x.

- By the definition of $\varepsilon_{\text{machine}}$, we have for the relative error:

 $$\text{For all } x \in \mathbb{R}, \text{ there exists } \varepsilon \text{ with } |\varepsilon| \leq \varepsilon_{\text{machine}} \text{ such that } \text{fl}(x) = x(1 + \varepsilon)$$

- The result of an operation \oplus using floating point numbers is $\text{fl}(a \oplus b)$.

- If $\text{fl}(a \oplus b)$ is the nearest floating point number to $a \oplus b$, the arithmetic rounds correctly (IEEE does), which leads to the following property:

 $$\text{For all floating point } x, y, \text{ there exists } \varepsilon \text{ with } |\varepsilon| \leq \varepsilon_{\text{machine}} \text{ such that } x \oplus y = (x \ast y)(1 + \varepsilon)$$

- Round to nearest even in the case of ties.