Conditioning

- **Absolute Condition Number** of a differentiable problem f at x:

$$\hat{\kappa} = \sup_{\delta x} \frac{\|\delta f\|}{\|\delta x\|} = \|J(x)\|$$

where the Jacobian $J_{ij} = \frac{\partial f_i}{\partial x_j}$, and the matrix norm is induced by the norms on δf and δx.

- **Relative Condition Number**

$$\kappa = \sup_{\delta x} \left(\frac{\|\delta f\|}{\|f(x)\|/\|x\|} \right) = \frac{\|J(x)\|}{\|f(x)\|/\|x\|}$$
Conditioning

- **Example**: The function $f(x) = \alpha x$
 - Absolute condition number $\hat{\kappa} = \|J\| = \alpha$
 - Relative condition number $\kappa = \frac{\|J\|}{\|f(x)\|/\|x\|} = \frac{\alpha}{\alpha x/x} = 1$

- **Example**: The function $f(x) = \sqrt{x}$
 - Absolute condition number $\hat{\kappa} = \|J\| = \frac{1}{2\sqrt{x}}$
 - Relative condition number $\kappa = \frac{\|J\|}{\|f(x)\|/\|x\|} = \frac{1/(2\sqrt{x})}{\sqrt{x}/x} = \frac{1}{2}$

- **Example**: The function $f(x) = x_1 - x_2$ (with ∞-norms)
 - Absolute condition number $\hat{\kappa} = \|J\| = \|(1, -1)\| = 2$
 - Relative condition number $\kappa = \frac{\|J\|}{\|f(x)\|/\|x\|} = \frac{2}{|x_1 - x_2|/\max\{|x_1|, |x_2|\}}$
 - Ill-conditioned when $x_1 \approx x_2$ (cancellation)

Condition of Matrix-Vector Product

- Consider $f(x) = Ax$, with $A \in \mathbb{C}^{m \times n}$
 \[
 \kappa = \frac{\|J\|}{\|f(x)\|/\|x\|} = \frac{\|A\|\|x\|}{\|Ax\|}
 \]

- For A square and nonsingular, use $\|x\|/\|Ax\| \leq \|A^{-1}\|$
 \[
 \kappa \leq \|A\|\|A^{-1}\|
 \]
 (equality achieved for the last right singular vector $x = v_m$)

- Also the condition number for $f(b) = A^{-1}b$ (solution of linear system)

- **Condition number of matrix A**:
 \[
 \kappa(A) = \|A\|\|A^{-1}\| = \left[\text{for 2-norm} \right] = \frac{\sigma_1}{\sigma_m}
 \]
Condition of System of Equations

- For fixed b, consider $f(A) = A^{-1}b$
- Perturb A by δA and find perturbation δx:
 $$(A + \delta A)(x + \delta x) = b$$
- Use $Ax = b$ and assume $(\delta A)(\delta x) \approx 0$:
 $$(\delta A)x + A(\delta x) = 0 \implies \delta x = -A^{-1}(\delta A)x$$
- Condition number of problem f:
 $$\kappa = \frac{\|\delta x\|}{\|x\|} \leq \frac{\|A^{-1}\|\|\delta A\|\|x\|}{\|x\|} \leq \frac{\|\delta A\|}{\|A\|} = \|A^{-1}\|\|A\| = \kappa(A)$$

Accuracy

- Consider an algorithm \tilde{f} for a problem f
- A computation $\tilde{f}(x)$ has absolute error $\|\tilde{f}(x) - f(x)\|$ and relative error
 $$\frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|}$$
- The algorithm is accurate if (for all x)
 $$\frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|} = O(\epsilon_{\text{machine}})$$
 where $O(\epsilon_{\text{machine}})$ is “on the order of $\epsilon_{\text{machine}}”$ (more next slide)
- Constant in $O(\epsilon_{\text{machine}})$ is likely to be large in many problems, since because of rounding we are not even using the correct x
More on $O(\epsilon_{\text{machine}})$

- The notation $\varphi(t) = O(\psi(t))$ means there is a constant C such that, for t close to a limit (often 0 or ∞), $|\varphi(t)| \leq C\psi(t)$
- **Example:** $\sin^2 t = O(t^2)$ as $t \to 0$ means $|\sin^2 t| \leq Ct^2$ for some C
- If φ depends on additional variables, the notation

 $$\varphi(s, t) = O(\psi(t)) \quad \text{uniformly in } s$$

 means there is a constant C such that $|\varphi(s, t)| \leq C\psi(t)$ for any s
- **Example:** $(\sin^2 t)(\sin^2 s) = O(t^2)$ uniformly as $t \to 0$, but not if $\sin^2 s$ is replaced by s^2
- In bounds such as $\|\tilde{x} - x\| \leq C\kappa(A)\epsilon_{\text{machine}}\|x\|$, C does not depend on A or b, but it might depend on the dimension m

Stability

- An algorithm \tilde{f} for a problem f is **stable** if (for all x)

 $$\frac{\|\tilde{f}(x) - f(\tilde{x})\|}{\|f(\tilde{x})\|} = O(\epsilon_{\text{machine}})$$

 for some \tilde{x} with

 $$\frac{\|\tilde{x} - x\|}{\|x\|} = O(\epsilon_{\text{machine}})$$

 “Nearly the right answer to nearly the right question”
- An algorithm \tilde{f} for a problem f is **backward stable** if (for all x)

 $$\tilde{f}(x) = f(\tilde{x}) \quad \text{for some } \tilde{x} \quad \text{with} \quad \frac{\|\tilde{x} - x\|}{\|x\|} = O(\epsilon_{\text{machine}})$$

 “Exactly the right answer to nearly the right question”
Stability of Floating Point Arithmetic

- The two floating point axioms imply backward stability for the operations \(\otimes \)

 1. For all \(x \in \mathbb{R} \), there exists \(\epsilon \) with \(|\epsilon| \leq \epsilon_{\text{machine}}\) such that
 \[\text{fl}(x) = x(1 + \epsilon) \]

 2. For all floating point \(x, y \), there exists \(\epsilon \) with \(|\epsilon| \leq \epsilon_{\text{machine}}\) such that
 \[x \otimes y = (x \ast y)(1 + \epsilon) \]

- **Example**: Subtraction \(f(x_1, x_2) = x_1 - x_2 \) with floating point algorithm
 \[\widetilde{f}(x_1, x_2) = \text{fl}(x_1) \ominus \text{fl}(x_2) \]

- (1) implies
 \[\text{fl}(x_1) = x_1(1 + \epsilon_1), \quad \text{fl}(x_2) = x_2(1 + \epsilon_2) \]
 for some \(|\epsilon_1|, |\epsilon_2| \leq \epsilon_{\text{machine}}\)

(Example continued)

- (2) implies
 \[\text{fl}(x_1) \ominus \text{fl}(x_2) = (\text{fl}(x_1) - \text{fl}(x_2))(1 + \epsilon_3) \]
 for some \(|\epsilon_3| \leq \epsilon_{\text{machine}}\)

- Combine:
 \[\text{fl}(x_1) \ominus \text{fl}(x_2) = (x_1(1 + \epsilon_1) - x_2(1 + \epsilon_2))(1 + \epsilon_3) = x_1(1 + \epsilon_1)(1 + \epsilon_2) - x_2(1 + \epsilon_2)(1 + \epsilon_3) = x_1(1 + \epsilon_4) - x_2(1 + \epsilon_5) \]
 for some \(|\epsilon_4|, |\epsilon_5| \leq 2\epsilon_{\text{machine}} + O(\epsilon_{\text{machine}}^2)\)

- Therefore, \(\text{fl}(x_1) \ominus \text{fl}(x_2) = \tilde{x}_1 - \tilde{x}_2 \)
Stability of Floating Point Arithmetic

- **Example**: Inner product $f(x, y) = x^* y$ computed with \otimes and \oplus is backward stable (more later)

- **Example**: Outer product $f(x, y) = xy^*$ computed with \otimes is not backward stable (unlikely that \tilde{f} is rank-1)

- **Example**: $f(x) = x + 1$ computed by $\tilde{f}(x) = \text{fl}(x) \oplus 1$ is not backward stable (consider $x \approx 0$)

- **Example**: $f(x, y) = x + y$ computed by $\tilde{f}(x, y) = \text{fl}(x) \oplus \text{fl}(y)$ is backward stable

Accuracy of a Backward Stable Algorithm

- If a backward stable algorithm is used to solve a problem f with condition number κ, the relative errors satisfy
 \[
 \frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|} = O(\kappa(x)\epsilon_{\text{machine}})
 \]

- **Proof.** Backward stability means $\tilde{f}(x) = f(\tilde{x})$ for \tilde{x} such that
 \[
 \frac{\|\tilde{x} - x\|}{\|x\|} = O(\epsilon_{\text{machine}})
 \]

 The definition of condition number gives
 \[
 \frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|} \leq (\kappa(x) + o(1)) \frac{\|\tilde{x} - x\|}{\|x\|}
 \]

 where $o(1) \to 0$ as $\epsilon_{\text{machine}} \to 0$. Combining these gives desired result.