Chapter 1

High-Order Discontinuous Galerkin Methods for CFD

Jaime Peraire and Per-Olof Persson

1.1. Introduction

In recent years it has become clear that the current computational methods for scientific and engineering phenomena are inadequate for many challenging problems. Examples of these problems are wave propagation, turbulent fluid flow, as well as problems involving nonlinear interactions and multiple scales. This has resulted in a significant interest in so-called high-order accurate methods, which have the potential to produce more accurate and reliable solutions. A number of high-order numerical methods appropriate for flow simulation have been proposed, including finite difference methods,1,2 high-order finite volume methods,3,4 stabilized finite element methods,5 Discontinuous Galerkin (DG) methods,6–8 hybridized DG methods,9–11 and spectral element/difference methods.12,13 All of these methods have advantages in particular situations, but for various reasons most general purpose commercial-grade simulation tools still use traditional low-order methods.

Much of the current research is devoted to the discontinuous Galerkin method. This is partly because of its many attractive properties, such as a rigorous mathematical foundation, the ability to use arbitrary orders of discretization on general unstructured simplex meshes, and the natural stability properties for convective-diffusive operators. In this chapter, we describe our work on efficient DG methods for unsteady compressible flow applications, including deformable domains and turbulent flows.
1.2. Governing Equations

1.2.1. The Compressible Navier-Stokes Equations

The compressible Navier-Stokes equations are written as:

\[
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i}(\rho u_i) = 0, \quad (1.1)
\]

\[
\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_i u_j + p) = \frac{\partial}{\partial x_j} \tau_{ij} \quad \text{for } i = 1, 2, 3, \quad (1.2)
\]

\[
\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_i}(u_j(\rho E + p)) = -\frac{\partial}{\partial x_j} q_j + \frac{\partial}{\partial x_j}(u_j \tau_{ij}), \quad (1.3)
\]

where \(\rho\) is the fluid density, \(u_1, u_2, u_3\) are the velocity components, and \(E\) is the total energy. The viscous stress tensor and heat flux are given by

\[
\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial u_k}{\partial x_j} \delta_{ij} \right), \quad (1.4)
\]

and

\[
q_j = -\mu \frac{\partial}{\partial x_j} \left(E + \frac{p}{\rho} - \frac{1}{2} u_k u_k \right), \quad (1.5)
\]

Here, \(\mu\) is the viscosity coefficient and \(Pr = 0.72\) is the Prandtl number which we assume to be constant. For an ideal gas, the pressure \(p\) has the form

\[
p = (\gamma - 1) \rho \left(E - \frac{1}{2} u_k u_k \right), \quad (1.6)
\]

where \(\gamma\) is the adiabatic gas constant.

1.2.2. Turbulence Modeling

We consider two different approaches for the simulation of turbulent flows – Implicit Large Eddy Simulation (ILES) and the Reynolds Averaged Navier-Stokes (RANS) equations.

In LES modeling, the large scale flow features are resolved while the small scales are modeled. The rationale behind this is that the small scales are isotropic, carry less of the flow energy and therefore do not have as much influence on the mean flow, and can therefore be approximated or modeled. The effect of these subgrid scales (SGS) is approximated by an eddy viscosity which can be derived from a so-called SGS model or can be taken to be equal to the dissipation in the numerical scheme, which is the principle behind the ILES model.14 Simulations based on ILES models
often give very accurate predictions but are limited to low Reynolds number flows because of the high computational cost of resolving the large scale features of the flow.

For the RANS modeling, we add a turbulent dynamic (or eddy) viscosity μ_t to μ in the Navier-Stokes equations (1.1)-(1.3), and solve for the time-averaged values of the flow quantities ρ, ρu_i, and ρE. We use the Spalart-Allmaras One-Equation model for μ_t, where a working variable $\tilde{\nu}$ is introduced to evaluate the turbulent dynamic viscosity. This new variable obeys the transport equation

$$ \frac{D\tilde{\nu}}{Dt} = c_{b1} \tilde{S} \tilde{\nu} + \frac{1}{\sigma} \left[\nabla \cdot \left((\nu + \tilde{\nu}) \nabla \tilde{\nu} \right) + c_{b2} (\nabla \tilde{\nu})^2 \right] - c_{w1} f_w \left(\frac{\tilde{\nu}}{d} \right)^2. \quad (1.7) $$

For simplicity, the trip terms have been excluded here, meaning that we assume that the Reynolds numbers are large enough so that the flow over the entire body surface is turbulent. The turbulent dynamic viscosity is then calculated as

$$ \mu_t = \rho \nu_t, \quad \nu_t = \tilde{\nu} f_{v1}, \quad f_{v1} = \frac{\chi}{\chi^3 + c_{v3}^3}, \quad \chi = \frac{\tilde{\nu}}{\nu}. \quad (1.8) $$

The production term is expressed as

$$ \tilde{S} = S + \frac{\tilde{\nu}}{\kappa^2 d^2} f_{v2}, \quad S = \sqrt{2 \Omega_{ij} \Omega_{ij}}, \quad f_{v2} = 1 - \frac{\chi}{1 + \chi f_{v1}}. \quad (1.9) $$

Here $\Omega_{ij} = \frac{1}{2}(\partial u_i/\partial x_j - \partial u_j/\partial x_i)$ is the rotation tensor and d is the distance from the closest wall. The function f_w is given by

$$ f_w = g \left[\frac{1 + c_{w3}^6}{g^6 + c_{w3}^6} \right]^{1/6}, \quad g = r + c_{w2} (r^6 - r), \quad r = \frac{\tilde{\nu}}{S \kappa^2 d^2}. \quad (1.10) $$

The closure constants used here are $c_{b1} = 0.1355$, $c_{b2} = 0.622$, $c_{v3} = 7.1$, $\sigma = 2/3$, $c_{w1} = (c_{b1}/\kappa^2) + (1 + c_{b2})/\sigma$, $c_{w2} = 0.3$, $c_{w3} = 2$, $\kappa = 0.41$.

1.2.3. **Mapping-based ALE Formulation for Deformable Domains**

Here, we formulate the Navier-Stokes equations in an Arbitrary-Lagrangian Eulerian (ALE) framework, to allow for variable geometries. We follow a similar approach to that presented in Ref. 2. That is, we construct a time dependent mapping between a fixed reference domain and the time varying physical domain. The original equations in the Eulerian domain are then transformed to the fixed reference configuration and the discretization
is always carried out on the fixed domain. In order to ensure that constant solutions in the physical domain are preserved exactly, we introduce an additional scalar equation in which the Jacobian of the transformation is integrated numerically using the same spatial and time discretization schemes. This numerically integrated Jacobian is used to correct for integration errors in the conservation equations.

1.2.3.1. The Mapping

Let the physical domain of interest be denoted by \(v(t) \) and the fixed reference configuration be denoted by \(V \) (see Fig. 1.1). Also, let \(N \) and \(n \) be the outward unit normals in \(V \) and \(v(t) \), respectively. We assume, for each time \(t \), the existence of a smooth one-to-one time dependent mapping given by an isomorphism, \(\mathcal{G}(X, t) \), between \(V \) and \(v(t) \). Thus a point \(X \) in \(V \) is mapped to a point \(x(t) \) in \(v(t) \), which is given by \(x = \mathcal{G}(X, t) \). In addition, we assume that for all \(X \), \(x = \mathcal{G}(X, t) \) is a smooth differentiable function of \(t \). In order to transform the Navier-Stokes equations from the physical \((x, t)\) domain to the reference \((X, t)\) domain, we require some differential properties of the mapping. To this end, we introduce the mapping deformation gradient \(G \) and the mapping velocity \(v_G \) as

\[
G = \nabla_X \mathcal{G} \quad , \quad v_G = \frac{\partial \mathcal{G}}{\partial t} \bigg|_X .
\]

In addition, we denote the Jacobian of the mapping by \(g = \det(G) \). We note that corresponding infinitesimal vectors \(dL \) in \(V \) and \(dl \) in \(v(t) \) are related by \(dl = G dL \). Also, the elemental volumes are related by \(dv = g dV \). From this, we can derive an expression for the area change. Let \(dA = N dA \) denote an area element which after deformation becomes \(da = nda \). We then have that \(dV = dL \cdot dA \) and \(dv = dl \cdot da \). Therefore, we must have that

\[
nda = gG^{-T}N dA \quad \text{and} \quad N dA = g^{-1}G^T nda .
\]

1.2.3.2. Transformed Equations

As a starting point, we consider the compressible Navier-Stokes equations (1.1-1.3) in the physical domain \((x, t)\), written as a system of conservation laws

\[
\frac{\partial U}{\partial t} + \nabla \cdot F(U, \nabla U) = 0 ,
\]

(1.13)
where \mathbf{U} is the vector of conserved variables and \mathbf{F} is a generalized column flux vector which components are the physical flux vectors in each of the spatial coordinate directions. Here \mathbf{F} incorporates both inviscid and viscous contributions. That is, $\mathbf{F} = \mathbf{F}^{\text{inv}}(\mathbf{U}) + \mathbf{F}^{\text{vis}}(\mathbf{U}, \nabla \mathbf{U})$ and ∇ represents the spatial gradient operator in the \mathbf{x} variables.

In order to obtain the corresponding conservation law written in the reference configuration we re-write the above equation in an integral form as

$$\int_{v(t)} \frac{\partial \mathbf{U}}{\partial t} \, dv + \int_{\partial v} \mathbf{F} \cdot \mathbf{n} \, da = 0. \quad (1.14)$$

Note that the above expression follows directly from (1.13) by integrating over $v(t)$ and applying the divergence theorem. It is now possible to utilize the mapping and evaluate these integrals in the reference configuration. Consider first the second term,

$$\int_{\partial v} \mathbf{F} \cdot \mathbf{n} \, da = \int_{\partial V} \mathbf{F} \cdot (\mathbf{gG}^{-T} \mathbf{N}) \, dA = \int_{\partial V} (\mathbf{gG}^{-1} \mathbf{F}) \cdot \mathbf{N} \, dA. \quad (1.15)$$

Similarly, the first integral is transformed by means of Reynolds transport theorem to give

$$\int_{v(t)} \frac{\partial \mathbf{U}}{\partial t} \, dv = \frac{d}{dt} \int_{v(t)} \mathbf{U} \, dv - \int_{\partial v} (\mathbf{U} \mathbf{v_G}) \cdot \mathbf{n} \, da \quad (1.16)$$

$$= \frac{d}{dt} \int_{V} \mathbf{g}^{-1} \mathbf{U} \, dV - \int_{\partial V} (\mathbf{U} \mathbf{v_G}) \cdot (\mathbf{gG}^{-T} \mathbf{N}) \, dA \quad (1.17)$$

$$= \int_{V} \frac{\partial (\mathbf{g}^{-1} \mathbf{U})}{\partial t} \bigg|_x \, dV - \int_{\partial V} (\mathbf{gUG}^{-1} \mathbf{v_G}) \cdot \mathbf{N} \, dA. \quad (1.18)$$
Using the divergence theorem once again enables an equivalent local conservation law in the reference domain to be derived as,

\[
\frac{\partial U_X}{\partial t} X + \nabla_X \cdot F_X(U_X, \nabla_X U_X) = 0 ,
\]

where the time derivative is at a constant \(X\) and the spatial derivatives are taken with respect to the \(X\) variables. The transformed vector of conserved quantities and corresponding fluxes in the reference space are

\[
U_X = gU , \quad F_X = gG^{-1}F - U_X G^{-1} v_G ,
\]

or, more explicitly,

\[
F_X = F_X^{\text{inv}} + F_X^{\text{vis}} , \quad F_X^{\text{inv}} = gG^{-1}F^{\text{inv}} - U_X G^{-1} v_G , \quad F_X^{\text{vis}} = gG^{-1}F^{\text{vis}} ,
\]

and by a simple application of the chain rule,

\[
\nabla U = \nabla_X (g^{-1} U_X) G^{-1} = (g^{-1} \nabla_X U_X + U_X \nabla_X (g^{-1}))(G^{-1}) .
\]

1.2.3.3. Geometric Conservation Law

It turns out that, for arbitrary mappings, a constant solution in the physical domain is not necessarily a solution of the discretized equations in the reference domain. Even though this error is typically very small for high order discretizations, the situation is quite severe for lower order approximations since the free-stream condition is not preserved identically. Satisfaction of the constant solution is often referred to as the Geometric Conservation Law (GCL) and was originally discussed in Ref. 17. The source of the problem is the inexact integration of the Jacobian \(g\) of the transformation by the numerical scheme.

First, we note that using expressions (1.12) together with the divergence theorem, it is straightforward to prove the so-called Piola relationships, which hold for arbitrary vectors \(W\) and \(w\):

\[
\nabla_X \cdot W = g\nabla \cdot (g^{-1}GW) , \quad \nabla \cdot w = g^{-1}\nabla_X \cdot (gG^{-1}w) . \quad (1.26)
\]

When the solution \(U\) is constant, say \(\bar{U}\), we have

\[
\nabla_X \cdot F_X = g\nabla \cdot (F - \bar{U} v_G) = -g\bar{U} \nabla \cdot v_G = -[\nabla_X \cdot (gG^{-1}v_G)]\bar{U} .
\]

\[
(1.27)
\]
Therefore, for a constant solution \bar{U}, equation (1.19) becomes

$$\frac{\partial U_x}{\partial t} + \nabla_x \cdot F_x = g^{-1} \bar{U}_x \left(\frac{\partial g}{\partial t} \right)_x - \nabla_x \cdot (gG^{-1}v_G) .$$

(1.28)

We see that the right hand side is only zero if the equation for the time evolution of the transformation Jacobian g

$$\frac{\partial g}{\partial t} \left|_X \right. - \nabla_x \cdot (gG^{-1}v_G) = 0 ,$$

(1.29)

is integrated exactly by our numerical scheme. Since in general, this will not be the case, the constant solution \bar{U}_x in the physical space will not be preserved exactly.

An analogous problem was brought up in the formulation presented in Ref. 2. The solution proposed there was to add some corrections aimed at canceling the time integration errors. Here, we use a slightly different approach. The system of conservation laws (1.19) is replaced by

$$\frac{\partial (\bar{g}g^{-1}U_x)}{\partial t} \left|_X \right. - \nabla_x \cdot F_x = 0 ,$$

(1.30)

where \bar{g} is obtained by solving the following equation

$$\frac{\partial \bar{g}}{\partial t} \left|_X \right. - \nabla_x \cdot (gG^{-1}v_G) = 0 .$$

(1.31)

We note that even though \bar{g} is an approximation to g, when the above equation is solved numerically with the same numerical scheme employed for (1.30), its value will differ from that of g due to integration errors. It is straightforward to verify that (1.30) does indeed preserve a constant solution as desired. Finally, we point out that the fluxes in equation (1.31) do not depend on U and are only a function of the mapping. This has two implications. First, when the mapping is prescribed, equation (1.31) can be integrated independently to obtain \bar{g} in time. Second, the fluxes in (1.31) do not require communication with the neighboring elements, thus simplifying its numerical solution.
1.3. Numerical Methods

1.3.1. The Compact Discontinuous Galerkin Method

In order to develop a Discontinuous Galerkin method, we consider a general system of conservation laws

\[
\frac{\partial u}{\partial t} + \nabla \cdot F^{\text{inv}}(u) = \nabla \cdot F^{\text{vis}}(u, \nabla u) + S(u, \nabla u), \tag{1.32}
\]

in a domain \(\Omega \), with conserved state variables \(u \), inviscid flux function \(F^{\text{inv}} \), viscous flux function \(F^{\text{vis}} \) and source term \(S \). We note that the governing equations described in the previous section can all be cast in this particular form. We eliminate the second order spatial derivatives of \(u \) by introducing additional variables \(q = \nabla u \):

\[
\frac{\partial u}{\partial t} + \nabla \cdot F^{\text{inv}}(u) = \nabla \cdot F^{\text{vis}}(u, q) + S(u, q), \tag{1.33}
\]

\[
q - \nabla u = 0. \tag{1.34}
\]

Next, we consider a triangulation \(T_h \) of the spatial domain \(\Omega \) and introduce the finite element spaces \(V_h \) and \(\Sigma_h \) as

\[
V_h = \{ v \in [L^2(\Omega)]^m \mid v|_K \in [P_p(K)]^m, \quad \forall K \in T_h \} , \tag{1.35}
\]

\[
\Sigma_h = \{ r \in [L^2(\Omega)]^d \mid r|_K \in [P_p(K)]^d, \quad \forall K \in T_h \} , \tag{1.36}
\]

where \(P_p(K) \) is the space of polynomial functions of degree at most \(p \geq 0 \) on triangle \(K \), \(m \) is the dimension of \(u \) and \(d \) is the spatial dimension. We now consider DG formulations of the form: find \(u_h \in V_h \) and \(q_h \in \Sigma_h \) such that for all \(K \in T_h \), we have

\[
\int_K q_h \cdot r \, dx = -\int_K u_h \nabla \cdot r \, dx + \int_{\partial K} \hat{u} r \cdot n \, ds, \quad \forall r \in [P_p(K)]^m, \tag{1.37}
\]

\[
\int_K \frac{\partial u_h}{\partial t} v \, dx - \int_K F^{\text{inv}}(u_h) \cdot \nabla v \, dx + \int_{\partial K} \hat{F}^{\text{inv}} v \, ds = -\int_K F^{\text{vis}}(u_h, q_h) \cdot \nabla v \, dx + \int_{\partial K} \hat{F}^{\text{vis}} v \, ds + \int_K S(u_h, q_h) v \, dx, \quad \forall v \in [P_p(K)]^m. \tag{1.38}
\]

Here, the numerical fluxes \(\hat{F}^{\text{inv}}, \hat{F}^{\text{vis}} \) and \(\hat{u} \) are approximations to \(F^{\text{inv}} \cdot n, F^{\text{vis}} \cdot n \) and \(u \), respectively, on the boundary \(\partial K \) of the element \(K \) and \(n \) is the unit normal to the boundary. As commonly done, the inviscid fluxes \(\hat{F}^{\text{inv}} \) are approximated using an approximate Riemann solver. In most of
our applications, we use the method due to Roe18. For the viscous fluxes F^{vis}, we use the compact discontinuous Galerkin (CDG) scheme.19

The CDG scheme consists of a modification of the original Local Discontinuous Galerkin method.20 This modification is aimed at making the scheme more compact and hence more attractive computationally, especially when dealing with implicit discretizations and implementations on parallel computers. In order to describe the CDG method, we first consider the LDG method for approximating F^{vis}. In the LDG method, we choose \hat{u} and \hat{F}^{vis} according to

$$
\hat{F}^{\text{vis}} = \{\{ F^{\text{vis}}(u_h, q_h) \cdot n \} \} + C_{11}[u_h n] + C_{12}[F^{\text{vis}}(u_h, q_h) \cdot n].
$$

(1.39)

$$
\hat{u} = \{\{ u_h \} \} - C_{12} \cdot [u_h n].
$$

(1.40)

Here, $\{ \} \text{ and } \[\]$ denote the average and jump operators across the interface.19 The constant C_{11} can be chosen equal to zero, except at the boundary interfaces, leading to the so called minimum dissipation scheme.21 On the other hand, C_{12} is chosen as $C_{12} = n^*$, where n^* is the unit normal to the interface taken with an arbitrary sign. The only constraint on the sign is that all the C_{12} vectors corresponding to the different faces of a given element do not all point either inwards or outwards. See Refs.19,20 for additional details.

One of the major drawbacks of the LDG method is that it results in a scheme which is non-compact. This means that in the Jacobian of the residual some elements are not only connected to their neighbors but to the neighbors of its neighbors. This situation arises when structured or unstructured meshes are used as discussed in Ref.19.

In the CDG method, equation (1.39) is replaced by

$$
(F^{\text{vis}})^e = \{\{ F^{\text{vis}}(u_h, q^e_h) \cdot n \} \} + C_{11}[u_h n] + C_{12}[F^{\text{vis}}(u_h, q^e_h) \cdot n].
$$

(1.41)

The “edge” fluxes q^e_h are computed by solving the equation

$$
\int_K q^e_h \cdot r \, dx = -\int_K u_h \nabla \cdot r \, dx + \int_{\partial K} \hat{u}^e r \cdot n \, ds, \quad \forall r \in [P_p(K)]^d,\text{ }1.42
$$

where

$$
\hat{u}^e_h = \begin{cases}
\hat{u}_h & \text{on edge } e, \text{ given by equation (1.40)}, \\
 u_h & \text{otherwise.}
\end{cases}\text{ }1.43
$$

The CDG scheme is a little more expensive than the original LDG method as it requires a different elemental value of q^e_h for each edge (or face) e of the element, but it results in a scheme with a sparser structure than the
LDG method and element-wise compact connectivities. For more details we refer to Ref. 19.

1.3.2. Stabilization by Artificial Diffusion

Discontinuities and other under-resolved solution features pose considerable difficulties for most high-order methods. Several approaches inspired by the finite volume methodology have been proposed. The most straightforward approach consists of using some form of shock sensing to identify the elements lying in the shock region and reducing the order of the interpolating polynomial there.22,23 Despite its simplicity, this approach may yield satisfactory answers, in particular when combined with adaptive mesh refinement procedures.

More sophisticated approaches exist for selecting the interpolating polynomial such as those based on weighted essentially non-oscillatory (WENO) concepts.7,24,25 These methods allow for stable discretizations near discontinuities while still maintaining a high-order approximation. Although these methods have several attractive features, they have not yet been demonstrated in the practical unstructured mesh context using high-order approximation polynomials. Other interesting alternatives are based on applying filters to the solution,26,27 the selective application of viscosity to the different spectral scales,28 and methods based on reconstructing the solution from unlimited oscillatory solutions computed using a high-order method.29,30 These methods hold the promise of yielding uniformly accurate solutions near the discontinuity in a pointwise sense. However, a number of issues still remain unresolved. In particular, the extension of these methods to multiple dimensions is an open question.

In Ref. 31, we proposed a new strategy inspired by the early artificial viscosity methods,32 which has proved to be surprisingly effective in the context of high-order DG methods.33–35 The rationale behind the method is to add viscosity to the original equations in order to spread discontinuities over a length scale that can be adequately resolved within the space of approximating functions. The goal is not to introduce discontinuities in the approximating space, but to resolve the sharp gradients existing in a viscous shock with continuous approximations. For low order approximations, such as piecewise constant and/or linear, this approach produces discontinuities which are spread over several cells (e.g. 2-4 cells). Therefore, it is considered to be inferior to the more established finite volume shock capturing approaches. This is because several cells are required to
resolve a viscous shock profile with piecewise linear approximations.

However, for higher order polynomial approximations, the situation is different. The resolution of a piecewise polynomial of order p scales like $\delta \sim h/p$. This means that the amount of artificial viscosity required to resolve a shock profile is $O(h/p)$. Keeping h fixed, the amount of artificial viscosity required scales like $1/p$ and the accuracy of the solution in the neighborhood of the shock becomes $O(h/p)$. This compares favorably to the more standard approaches which are only $O(h)$ accurate. In other words, for high order p, we can exploit sub-cell resolution and obtain shock profiles which are much thinner than the element size. Recall that in the more standard approaches, the order of the interpolating polynomial is reduced over the whole element and as a consequence, there is no hope for resolving the shock profile at a sub-cell level.

1.3.2.1. Artificial Viscosity Models

The most straightforward artificial viscosity model is to add Laplacian diffusion to the system of conservation laws

\[
\frac{\partial u}{\partial t} + \nabla \cdot F(u, \nabla u) = \nabla \cdot (\varepsilon \nabla u). \tag{1.44}
\]

Here, the parameter ε controls the amount of viscosity. The shocks that may appear in the solution to this modified equation will spread over layers of thickness $O(\varepsilon)$. Therefore, when attempting to approximate these solutions numerically, ε should be chosen as a function of the resolution available in the approximating space. Near the shocks, we take $\varepsilon = O(h/p)$, where h is the element size and p is the order of the approximating polynomial. Away from discontinuities, where the unmodified solution is resolved, we want $\varepsilon = 0$.

Instead of the Laplacian term added to the right hand side of equation (1.44), one can also consider a physically inspired artificial viscosity term analogous to dissipative terms in the Navier-Stokes equations but with a viscosity coefficient which is determined by numerical considerations. Details about this physically inspired model can be found in Ref. 31. In our experience, the physical model and the Laplacian model of equation (1.44) perform similarly.

1.3.2.2. Discontinuity Sensor

In order to avoid the use of artificial viscosity in resolved regions of the flow, we utilize a resolution sensor. We write the solution within each el-
lement in terms of a hierarchical family of orthogonal polynomials. In 1D, the solution is represented by an expansion in terms of orthonormal Legendre polynomials, whereas in multidimensions, an orthonormal Koornwinder basis is employed within each triangle. For smooth solutions, the coefficients in the expansion are expected to decay very quickly. On the other hand, when the solution is not smooth, the strength of the discontinuity will dictate the rate of decay of the expansion coefficients. We express the solution of order p within each element in terms of an orthogonal basis as

$$u = \sum_{i=1}^{N(p)} u_i \psi_i ,$$

(1.45)

where $N(p)$ is the total number of terms in the expansion and ψ_i are the basis functions. In addition, we also consider a truncated expansion of the same solution, only containing the terms up to order $p - 1$, that is,

$$\hat{u} = \sum_{i=1}^{N(p-1)} u_i \psi_i .$$

(1.46)

Within each element Ω_e, the following resolution indicator is defined,

$$S_e = \frac{(u - \hat{u}, u - \hat{u})_e}{(u, u)_e} ,$$

(1.47)

where $(\cdot, \cdot)_e$ is the standard inner product in $L_2(\Omega_e)$. In practice, we have found S_e to be a remarkably reliable indicator.

Once the shock has been sensed, the amount of viscosity is taken to be constant over each element and determined by the following smooth function,

$$\varepsilon_e = \begin{cases}
0 & \text{if } s_e < s_0 - \kappa , \\
\frac{\varepsilon_0}{2} \left(1 + \sin \frac{\pi (s_e - s_0)}{2\kappa}\right) & \text{if } s_0 - \kappa \leq s_e \leq s_0 + \kappa , \\
\varepsilon_0 & \text{if } s_e > s_0 + \kappa .
\end{cases}$$

(1.48)

Here, $s_e = \log_{10} S_e$ and the parameters $\varepsilon_0 \sim h/p$, $s_0 \sim 1/p^4$, and κ are chosen empirically sufficiently large so as to obtain a sharp but smooth shock profile.

1.3.3. Parallel Preconditioned Newton-Krylov Solvers

After discretization of (1.32) using the Compact Discontinuous Galerkin method and elimination of the variables associated with q_h within each element, we obtain a system of coupled ordinary differential equations (ODEs)
of the form:

$$M \dot{u} = r(u),$$

where $u(t)$ is a vector containing the degrees of freedom associated with u_h, which is represented using a nodal basis. The vector \dot{u} denotes the time derivative of $u(t)$, M is the mass matrix, and r is the residual vector. We integrate (1.49) implicitly in time using either diagonal implicit Runge-Kutta methods (DIRK) or the backward differentiation formulas (BDF). Using Newton’s method for solving the nonlinear systems of equations that arise, it is required to solve linear systems involving matrices of the form

$$A \equiv \alpha_0 M - \Delta t \frac{d}{du} r \equiv \alpha_0 M - \Delta t K.$$

(1.50)

For simplicity of presentation, we assume that $\alpha_0 = 1$, which is the case for the first-order accurate backward Euler method. Other values of α_0, as required for higher-order methods, simply correspond to a scaling of the timestep Δt.

1.3.3.1. Jacobian Sparsity Pattern

The system matrix $A = M - \Delta t K$ is sparse with a block-wise structure corresponding to the element connectivities. An example of a small triangular mesh with polynomial degrees $p = 2$ within each element is shown in Fig. 1.2. It is worth pointing out that the number of nonzero blocks in each row is equal to four in 2D and five in 3D, except for boundary elements. To be able to use machine optimized dense linear algebra routines, such as the BLAS/LAPACK libraries, we represent A in an efficient dense block format, see Ref. 40 for details. We note that our CDG scheme actually produces sparser off-diagonal blocks than other known methods, which we take advantage of in our implementation. However, in what follows, we assume for simplicity that all nonzero blocks are full dense matrices. The block with element indices $1 \leq i, j \leq n$ will be denoted by A_{ij}, with n the total number of elements.

1.3.3.2. Incomplete LU Preconditioning

It is clear that the performance of the iterative solvers will depend strongly on the timestep Δt. As $\Delta t \to 0$, the matrix A reduces to the mass matrix, which is block diagonal and inverted exactly by all preconditioners that we consider. However, as $\Delta t \to \infty$, the problem becomes harder and
often not well-behaved. Physically, a small Δt means that the information propagation is local, while a large Δt means information is exchanged over large distances during the timestep. This effect, which is important when designing iterative methods, is even more important when we consider parallel algorithms since algorithms based on local information exchanges usually scale better than ones with global communication patterns.

When solving the system $Au = b$ using Krylov subspace iterative methods such as GMRES, it is essential to use a good preconditioner. This amounts to finding an approximation \tilde{A} to A which allows for a relatively inexpensive computation of $\tilde{A}^{-1}p$ for arbitrary vectors p. One of the simplest choices that performs reasonably for many problems is the block-diagonal, or the block-Jacobi, preconditioner

$$
\tilde{A}_{ij}^J = \begin{cases}
A_{ij} & \text{if } i = j, \\
0 & \text{if } i \neq j.
\end{cases}
$$

Clearly, \tilde{A}^J is cheap to invert compared to A, since all the diagonal blocks are independent. However, unlike the point-Jacobi iteration, there is a significant preprocessing cost in the factorizations of the diagonal blocks \tilde{A}_{ij}^J, which is comparable to the cost of more complex factorizations.40

A minor modification of the block-diagonal preconditioner is the block Gauss-Seidel preconditioner, which keeps the diagonal blocks plus all the upper triangular blocks:

$$
\tilde{A}_{ij}^{GS} = \begin{cases}
A_{ij} & \text{if } i \leq j, \\
0 & \text{if } i > j.
\end{cases}
$$
The preprocessing cost is the same as before, and solving $\tilde{A}^{\text{GS}} \tilde{u} = p$ is only a constant factor more expensive than for \tilde{A}^J. The Gauss-Seidel preconditioner can perform well for some simple problems, such as scalar convection problems, but in general it only gives a small factor of improvement over the block-diagonal preconditioner. Furthermore, the sequential nature of the triangular back-solve with \tilde{A}^{GS} makes the Gauss-Seidel preconditioner hard to parallelize.

A more ambitious preconditioner with similar storage and computational cost is the block incomplete LU factorization $\tilde{A}^{\text{ILU}} = \tilde{L} \tilde{U}$ with zero fill-in. This block-ILU(0) algorithm corresponds to block-wise Gaussian elimination, where no new blocks are allowed into the matrix. This factorization can be computed with the following simple algorithm:

```latex
\text{function } [\tilde{L}, \tilde{U}] \leftarrow \text{IncompleteLU}(A, \text{mesh})
\tilde{U} = A, \tilde{L} = I
\text{for } j = 1, \ldots, n - 1
\text{for neighbors } i > j \text{ of } j \text{ in } \text{mesh}
\quad \tilde{L}_{ij} = \tilde{U}_{ij} \tilde{U}_{jj}^{-1}
\quad \tilde{U}_{ii} = \tilde{U}_{ii} - \tilde{L}_{ik} \tilde{U}_{ki}
```

We also note here that the upper-triangular blocks of \tilde{U} are identical to those in A, which reduces the storage requirements for the factorization. The back-solve using \tilde{L} and \tilde{U} has the same sequential nature as for Gauss-Seidel, but it turns out that the performance of the block-ILU(0) preconditioner can be fundamentally better.

1.3.3.3. Minimum Discarded Fill Element Ordering

It is clear that the Gauss-Seidel and the incomplete LU factorizations will depend strongly on the ordering of the blocks, or the elements, in the mesh. This is because of the mesh ordering determines which element connections are kept and which are discarded when calculating \tilde{A}. In Refs. 40, 41, we proposed a simple heuristic algorithm for finding appropriate element orderings. Our algorithm considers the fill that would be ignored if element j' was chosen as the pivot element at step j:

$$\Delta \tilde{U}_{ik}^{(ij')} = -\tilde{U}_{ij} \tilde{U}_{j' j}^{-1} \tilde{U}_{j' k}, \quad \text{for neighbors } i \geq j, k \geq j \text{ of element } j'.$$

(1.53)
The matrix $\Delta \tilde{U}^{(j,j')}$ corresponds to fill that would be discarded by the ILU algorithm. In order to minimize these errors, we consider a set of candidate pivots $j' \geq j$ and pick the one that produces the smallest fill. As a measurement of the magnitude of the fill, or the corresponding weight, we take the Frobenius matrix norm of the fill matrix:

$$w^{(j,j')} = \| \Delta \tilde{U}^{(j,j')} \|_F.$$ \hfill (1.54)

As a further simplification, we note that

$$\| \Delta \tilde{U}^{(j,j')}_{ik} \|_F = \| U_{ij} \tilde{U}^{-1}_{j'j} \tilde{U}_{j'k} \|_F \leq \| U_{ij} \|_F \| \tilde{U}^{-1}_{j'j} \tilde{U}_{j'k} \|_F,$$ \hfill (1.55)

which means we can estimate the weight by simply multiplying the norms of the individual matrix blocks. By pre-multiplication of the block-diagonal, we can also avoid the matrix factor $\tilde{U}^{-1}_{j'j}$ above. See Ref. 41 for full pseudo-code of the algorithm.

We note that for a pure upwinded scalar convective problem, the MDF ordering is optimal since at each step it picks an element that either does not affect any other elements (downwind) or does not depend on any other elements (upwind), resulting in a perfect factorization. But the algorithm works well for other problems too, including multivariate and viscous problems, since it tries to minimize the error between the exact and the approximate LU factorizations. It also takes into account the effect of the discretization (e.g. highly anisotropic elements) on the ordering. These aspects are harder to account for with methods that are based on physical observations, such as line-based orderings.42–45

1.3.3.4. Coarse Scale Corrections and the ILU/Coarse Scale Preconditioner

Multi-level methods, such as multigrid46 solve the system $A u = b$ by introducing coarser level discretizations. This coarser discretization can be obtained either by using a coarser mesh (h-multigrid) or, for high-order methods, by reducing the polynomial degree (p-multigrid43,47). The residual is restricted to the coarse scale where an approximate error is computed, which is then applied as a correction to the fine scale solution. A few iterations of a smoother (such as Jacobi’s method) are applied after and possibly before the correction to reduce the high-frequency errors.

For our DG discretizations, it is natural and practical to consider coarser scales obtained by reducing the polynomial order p. The problem size is highly reduced by decreasing the polynomial order to $p = 0$ or $p = 1$, even
from moderately high orders such as $p = 4$. For very large problems it may be necessary to consider h-multigrid approaches to solve the coarse grid problem, but here we only use p-multigrid.

Furthermore, we have observed that we often get overall better performance by using a simple two-level scheme where the fine level corresponds to $p = 4$ and the coarse level is either $p = 1$ or $p = 0$ rather than a hierarchy of levels. Thus, our preconditioning algorithm solves the linear system $Au = b$ approximately using a single coarse scale correction,

0. $A^{(0)} = P^T A P$ \hspace{1cm} Precompute coarse operator, block wise
1. $b^{(0)} = P^T b$ \hspace{1cm} Restrict residual element/component wise
2. $A^{(0)} u^{(0)} = b^{(0)}$ \hspace{1cm} Solve coarse scale problem
3. $u = P u^{(0)}$ \hspace{1cm} Prolongate solution element/component wise
4. $u = u + \alpha A^{-1} (b - Au)$ \hspace{1cm} Apply smoother \tilde{A} with damping α

Possible smoothers \tilde{A} include block Jacobi \tilde{A}^J or Gauss-Seidel \tilde{A}^{GS}. It is also known that an ILU0 factorization can be used as a smoother for multigrid methods,\cite{48,49} and it has been reported that it performs well for the Navier-Stokes equations, at least in the incompressible case using low-order discretizations.\cite{50} Inspired by this, we use the block ILU0 factorization \tilde{A}^{ILU} as a post-smoother for a two-level scheme. Our numerical experiments indicate that the block ILU0 preconditioner and the low-degree correction preconditioner complement each other. With our MDF element ordering algorithm, the ILU0 performs almost optimally for highly convective problems, while the coarse scale correction with either block diagonal, block GS, or block ILU0 post-smoothing, performs very well in the diffusive limit.

The restriction/prolongation operator P is a block diagonal matrix with all the blocks being identical. The prolongation operator has the effect of transforming the solution from nodal basis to a hierarchical orthogonal basis function based on Koornwinder polynomials \cite{36} and setting the coefficients corresponding to the higher modes equal to zero. The transpose of this operator is used for the restriction of the weighted residual and for the projection of the matrix blocks. For more details on these operators we refer to Ref. 51. We use a smoothing factor $\alpha = 1$ for the ILU0 smoother. We use a direct sparse solve for the linear system in step 2, and we note that the matrix $A^{(0)}$ is usually magnitudes smaller than A.
1.3.3.5. Parallelization

The domain is naturally partitioned by the elements to achieve load balancing and low communication volumes, see Fig. 1.3. Because of the element-wise compact stencil of the CDG scheme, only one additional layer of elements has to be maintained for each process in addition to the elements in the partition. The elements at the domain boundary are processed first, then the computed data is sent to neighboring processes using non-interrupting communications, and while the data is sent the interior elements are processed. This typically leads to algorithms where the communication costs are negligible for evaluations of the residual $r(u)$, and therefore also for explicit time integration methods, as well as for the evaluation of the Jacobian matrix $K = \partial r/\partial u$.

In the iterative implicit solvers, the matrix-vector products also scale well in terms of communication, by overlapping with the computation of the interior elements. However, a problem here is the fact that the matrix-vector product operations are highly memory intensive, and tend to give poor scaling on multicore processors. Another issue is the parallelization of the preconditioner, where in particular the Gauss-Seidel and the incomplete LU preconditioners have a highly serial structure that is hard to parallelize.

Our preferred approach for parallelization of the ILU factorization is to apply it according to the element orderings determined by the MDF algorithm, but ignoring any contributions between elements in different partitions. In standard domain decomposition terminology, this essentially amounts to a non-overlapping Schwartz algorithm with incomplete solutions. It is clear that this approach will scale well in parallel, since each process will compute a partition-wise ILU factorization independent of all
other processes.

To minimize the error introduced by separating the ILU factorizations, we use the ideas from the MDF algorithm to obtain information about the weights of the connectivities between the elements. By computing a weighted partitioning using the weight

$$C_{ij} = \|A_{ii}^{-1}A_{ij}\|_F$$

between element i and j, we obtain partitions that are less dependent on each other, and reduce the error from the decomposition. The drawback is that the total communication volume might be increased, but if desired, a trade-off between these two effects can be obtained by adding a constant C_0 to the weights. In practice, since the METIS software used for the partitioning requires integer weights, we scale and round the C_{ij} values to integers between 1 and 100. It is clear that this method reduces to the block-Jacobi method as the number of partitions approaches the number of elements. However, in any practical setting, each partition will have at least 100’s of elements, in which the difference between partition-wise block-ILU and block-Jacobi is quite significant.

1.4. Applications

In this section we present four representative applications of our high-order DG methods.

1.4.1. Aeroacoustics and Kelvin-Helmholtz Instability

Our first example, which is adapted from Ref. 54, is an aeroacoustics problem with nonlinear interactions between a long-range wave and small-scale flow features. The flow has a Mach number of $M = 1/20$ in the double-periodic rectangular domain $-L \leq x \leq L = 1/M = 20$, $0 \leq y \leq 2L/5 = 8$. We use a Cartesian grid of 400-by-80 quadrilateral elements, with each element split into two triangles, giving a total of 64,000 elements. Within each element we use polynomials of degree $p = 3$, giving a total of 640,000 DOFs per component, or 2.56 million DOFs for the compressible Navier-Stokes equations.

The initial conditions are based on a sawtooth-shaped density profile, which we smooth to allow an accurate high-order representation on the grid:

$$\Phi(y) = \frac{y}{10} - \frac{2}{5}(\text{erf}(\delta(y - L/5)) - 1),$$

(1.57)
with grid resolution $\delta = N/p = 80/3$. We also define the long-range acoustic wave shape by

$$\Psi(x) = 1 + \cos \frac{\pi x}{L}.$$ \hfill (1.58)

The initial density, pressure, and velocities are then

$$\rho = 1 + 0.2M\Psi(x) + \Phi(y), \quad u = \sqrt{\gamma}\Psi(x), \quad p = \frac{(1 + \gamma M \Psi(x))/M^2}{ \hfill (1.59)}$$
$$v = 0,$$

with $\gamma = 1.4$. We solve the compressible Navier-Stokes equations, with a dynamic viscosity coefficient $\mu = 1/160$, corresponding to a Reynolds number $Re = 6,400$ based on the length of the domain. Since the grid is uniform and we wish to resolve the acoustic waves time-accurately, we use a standard explicit RK4 time integrator with timestep $\Delta t = 1.25 \cdot 10^{-4}$.

The resulting flow field is shown in Fig. 1.4, as color plots of the density at three time instances $t = 2.5$, $t = 7.5$, and $t = 12.5$. We note that the acoustic wave deforms into a weak shock, and that the density jump causes a Kelvin-Helmholtz type instability at the interface. Furthermore, although not clearly visible from these figures, there are highly complex interactions between the waves and the flow features, and capturing these accurately is one of our main motivations for using high-order methods.
1.4.2. Implicit Large Eddy Simulations of flow past airfoil

Next, we consider the transient flow around an SD7003 airfoil at an angle of attack of 4° and a Reynolds number of 60,000. We study the formation of laminar separation bubbles and the related transition to turbulence by means of Implicit Large Eddy Simulations. Here we only show the partial results for a medium-sized grid with 52,800 tetrahedral elements and polynomial orders $p = 4$ within each element, giving a total of 1.848 million high-order nodes or 9.24 million degrees of freedom, for more details we refer to Ref. 55. The discretized equations are integrated in time using a two stage, A-stable, third-order accurate diagonal implicit Runge-Kutta (DIRK) method with a non-dimensional timestep of $\Delta t = 0.01$.

Iso-surfaces of the q-criterion and the span-wise vorticity are shown in Fig. 1.4.2, and it is clear that complex three-dimensional structures are present. With the fifth-order accurate method in space, this relatively coarse mesh is able to accurately capture the average locations of separation, transition, and reattachment, as well as the average pressure and skin friction coefficient profiles along the foil, which can be seen in Fig. 1.4.2 together with comparison curves for the data by Galbraith & Visbal and XFOIL. The separation bubble is clearly visible in these profiles, with separation occurring on average at 21% of the chord, transition at 53% (as determined by the peak in boundary layer shape factor), and reattachment at 67% in the present simulations.

Table 1.1 gives a comparison with previously published results, as well as the mean lift and drag coefficients. TU-BS corresponds to the PIV experiments at the Technical University of Braunschweig Low-Noise Wind Tunnel, while HFWT is from the PIV experiments at the Air Force Research Lab Horizontal Free-Surface Water Tunnel. The present results are well within variations between previously published works, which is notable because of the relatively coarse meshes used, showing that our DG method is particularly well-suited for simulation of these turbulent flows – including hard-to-capture Tollmien-Schlichting waves.

1.4.3. Transonic Turbulent Flows

In the next example we demonstrate high-order DG methods for problems with shocks and the Spalart-Allmaras RANS turbulence model (1.7).

At the edge of the boundary layer, the profile of the eddy viscosity transitions to its free-stream value over a very narrow layer in which the curvature changes sign. Unless properly resolved, this may lead to non-
smooth or even negative numerical values for the eddy viscosity variable. This may easily result in a sudden instability in the computations. It turns out that the thickness of this transition region is determined by the laminar viscosity and therefore it is extremely narrow and impractical to resolve in most cases. Our proposal is to address this issue by introducing a Laplacian artificial viscosity model to the diffusion term of the SA equation (1.7). The artificial viscosity model aims to stabilize the discretization of the continuous equation (1.7) in finite dimensional space, which then
accommodates high-order approximations of RANS-SA equations on relatively coarse grids. We point out that the regions where the eddy viscosity profile is modified have a minor effect on the overall solution since they generally correspond to regions where the eddy viscosity is very small.

We stabilize our scheme using the artificial viscosity approach in section 1.3.2, and add two viscous models of the form:

$$F_{\text{stab}}(u, q) = \sum_{i=1}^{2} \frac{h}{p} \varepsilon(\psi(s^i(u))) F^m(u, q)$$

(1.61)

to the regular fluxes. Here, the sensor variables are the eddy viscosity $s^1(u) = \tilde{\nu}$ for the turbulence model and the density $s^2(u) = \rho$ for the shocks. As described earlier, the indicator $\psi(s) = \log_{10} E_H / E$ gives the ratio of high-frequency modes in the sensor s within each element, and the ε function gives a smooth transition from zero to one. For the viscosity models $F^1(u, q)$ and $F^2(u, q)$, we use simple Laplacian diffusion added to the turbulence model and to each of the Navier-Stokes equations, respectively.

Our first validation test is the turbulent flow past a flat plate at $Re_x = 1.02 \cdot 10^7$. We use three grids with 10-by-16 elements (grid C), 19-by-31 elements (grid B), and 37-by-61 elements (grid A), and polynomial degrees $p = 1, \ldots, 4$ within each element. In addition we solve the problem using a grid with 72-by-120 elements and $p = 4$, to be used only for computing a reference solution for the convergence study.

The velocity profiles and the friction velocities $u_\tau = \sqrt{\nu \partial u / \partial y(y = 0)}$ are shown in Fig. 1.7, together with experimental data. Note how the high-order $p = 4$ method on the coarse grid C gives very good agreement.
with both the finer lower-order grids as well as with the experimental data. Furthermore, the third graph shows grid convergence in the computed drag forces for all grids at \(p = 1, \ldots, 4 \). The slopes show good agreement with the expected dependency \(O(h^p) \) for differentiated quantities.

We also present results for a turbulent transonic flow past an RAE2822 airfoil at \(M = 0.729 \) and \(\text{Re} = 6.5 \times 10^6 \). We use a single-block, two-dimensional C-grid with about 1,000 anisotropic triangular elements, and polynomial degrees \(p = 4 \). The grid is clustered around the leading and the trailing edges and around the airfoil surface to resolve the boundary layer on the airfoil, as well as around the shock. The first grid point off the wall is at a distance of \(5 \times 10^{-5} \) from the airfoil surface.

The resulting flow field is shown in Fig. 1.4.3. We note how the high-order stretched elements resolve the boundary layer even if the elements are large, and that the artificial viscosity approach resolves the shock with subgrid accuracy.

1.4.4. Flapping Elliptic Wings

Our final example is the transient laminar flow around a pair of flapping wings. We consider a wing pair with an elliptical planform. The maximum normalized chord at the wing centerline is \(c = 1 \) and the wing tip-to-tip span is \(b = 10 \). The flapping motions occur symmetrically about a hinge located at the wing centerline. An HT13 airfoil is selected for the entire wing span, resulting in a maximum wing thickness of \(t = 0.065 \) at the wing centerline.

In order to obtain maximum geometrical flexibility, the equations are discretized on unstructured meshes of triangles and tetrahedra. We use the symmetry of the problem to only simulate one half of the domain, with
a symmetry boundary condition at the cut plane. We generate all the surface meshes in parametrized form using the DistMesh triangular mesh generator.62 The tetrahedral volume mesh is then generated by a Delaunay refinement based code.63 The resulting mesh has about 43,000 nodes and 231,000 tetrahedral elements for the half-domain, which corresponds to 4.62 million high-order nodes with polynomial orders of degree $p = 3$. To account for the curved domain boundaries, we use the nonlinear elasticity approach that we proposed in Ref. 64. The mesh is shown in Fig. 1.9.

We prescribe the symmetric wing motion using a flapping angle at the wing centerline hinge given by

$$
\phi(t) = A_\phi \cos \omega t
$$

(1.62)

where t is the time, $A_\phi = 30^\circ$ is the flapping amplitude and $\omega = 2\pi/20$ the flapping angular frequency. In addition, a wing twist angle is prescribed as a function of the span location. At the distance X from the centerline of the wing, the twist angle is

$$
\theta(t, X) = \varepsilon (a(X) \cos \omega t + b(X) \cos \omega t)
$$
where the twist scaling factor \(\varepsilon \in [0, 1] \) is a parameter that controls the amount of spanwise twist, and the coefficients \(a(X), b(X) \) are chosen to locally align the wing with the flow:61

\[
A(X) = -\frac{\sqrt{L^2 - X^2}}{4u_\infty L}, \quad B(X) = \frac{X \phi_0 \omega}{u_\infty}, \quad (1.63)
\]

\[
a(X) = \frac{-B}{A^2 \omega^2 + 1}, \quad b(X) = \frac{BA \omega}{A^2 \omega^2 + 1}. \quad (1.64)
\]

We note that this motion is not in any way an optimized flapping strategy, but it is adequate for the purposes of studying our computational models.

In order to develop an ALE formulation for this domain deformation, we need a smooth embedding of the flapping motion \(\phi(t), \theta(t, X) \) in the reference domain. That is, we need a smooth function \(x = x(t, X) \) that maps the wing surface to the location given by \(\phi(t), \theta(t, X) \). We also prefer volume-preserving mappings \((g = 1) \) to simplify the ALE equations.

While there are many ways to find such a mapping, we use a shearing approach as follows. To begin with, the function \(A(X) \) is not differentiable at \(X = L \), and not even real-valued for \(X > L \), so we need to modify the flapping motion to regularize this expression. We approximate

\[
\sqrt{L^2 - X^2} \approx \frac{\arctan(r(L - X))}{\arctan(r L)} L \quad (1.65)
\]

where \(r = 1.2 \) is a good choice. Note that this expression is also defined and smooth for \(X > L \). The mapping functions are then created using two combined shearing motions, which gives a volume-preserving deformation.
where all matrix entries as well as the grid velocity $\partial x/\partial t$ are found by analytical differentiation. Our simulations are done at a Reynolds number of $Re = 3,000$ and a free-stream Mach number of $M = 0.1$. We use a third-order accurate diagonal implicit Runge-Kutta (DIRK) method for time-integration, and polynomials of degree $p = 3$ within each tetrahedron for the space discretization. This gives a total of about 23 million degrees of freedom, and we integrate for three full flapping cycles using 600 implicit timesteps. We solve on a parallel computer with 32 nodes and a total of 256 computing processes, using the parallel Newton-Krylov methods described in section 1.3.3.

We show two representative test cases with different free-stream angle of attack α and twist scaling factor ε. Visualizations of these flow fields are shown in Fig. 1.10, where the Mach number is plotted as color on isosurfaces of the entropy. The flow plots show regions of flow separation and wake vortex structures. For the first case ($\alpha = 5^\circ$, $\varepsilon = 0.5$), significant separation occurs over the entire wing during the mid-to-late downstroke. In the second case ($\alpha = 10^\circ$, $\varepsilon = 1.0$), there is separation throughout the entire flapping cycle, in particular inboard of the wing.

The time evolution of the vertical and horizontal forces are shown in Fig. 1.11, along with a comparison with a simpler panel method code based on a potential flow model. We note that the panel method code predicts the lift forces well in the first case, although it over-predicts the thrust production somewhat. In the second case, due to the large amount of separation during the downstroke, the force predictions do not agree well. Therefore, we can conclude that low-fidelity simulation tools can perform well for attached flows, but high-fidelity Navier-Stokes solvers are essential for predicting flows with large amounts of separation.

1.5. Acknowledgements

We would like to acknowledge our collaborators J. Bonet, M. Drela, E. Israeli, C. N. Nguyen, A. Uranga, and D. J. Willis for the many contributions to the work reported in this chapter.
Angle of attack $\alpha = 5^\circ$, twist multiplier $\varepsilon = 0.5$

Angle of attack $\alpha = 10^\circ$, twist multiplier $\varepsilon = 1.0$

Fig. 1.10. The flow field around the flapping wing pair, visualized as Mach number color plots on isosurfaces of the entropy. The plots correspond to two representative cases of angle of attack and twist multiplier (top and bottom) and the times $t = 20$, $t = 25$, and $t = 30$ (left to right).

Fig. 1.11. The lift coefficients computed by the two simulation codes for the two cases considered ($\alpha = 5^\circ$, $\varepsilon = 0.5$ and $\alpha = 10^\circ$, $\varepsilon = 1.0$).
References

17. P. D. Thomas and C. K. Lombard, Geometric conservation law and its ap-
M.I.T. (June, 2008).

50. H. C. Elman, V. E. Howle, J. N. Shadid, and R. S. Tuminaro, A parallel block
multi-level preconditioner for the 3D incompressible Navier-Stokes equations,
(Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
52. A. Toselli and O. Widlund, Domain Decomposition Methods - Algorithms and
Theory, vol. 34, Springer Series in Computational Mathematics, (Springer,
2004).
53. G. Karypis and V. Kumar. METIS serial graph partitioning and fill-reducing
55. A. Uranga, P.-O. Persson, M. Drela, and J. Peraire, Implicit large eddy
simulation of transition to turbulence at low Reynolds numbers using a dis-
57. M. Drela. XFOIL Users Guide, Version 6.94, MIT Aeronautics and Astro-
nautics Department, (2002).
58. R. Radespiel, J. Windtle, and U. Scholz, Numerical and experimental flow
analysis of moving airfoils with laminar separation bubbles, AIAA Paper
59. M. Ol, B. McAuliffe, E. Haniff, U. Scholz, and C. Kahler. Comparison of lam-
inar separation bubbles measurements on a low Reynolds number airfoil in
three facilities. In Proc. of the 35th Fluid Dynamics Conference and Exhibit,
60. D. Coles and E. Hirst. Computation of turbulent boundary layers. In AFOSR-
61. P.-O. Persson, D. J. Willis, and J. Peraire. The numerical simulation of flapping wings at low reynolds numbers. In 48th AIAA Aerospace Sciences Meet-
63. K. Morgan and J. Peraire, Unstructured grid finite element methods for fluid
64. P.-O. Persson and J. Peraire. Curved mesh generation and mesh refinement
using Lagrangian solid mechanics. In 47th AIAA Aerospace Sciences Meeting
65. D. J. Willis, J. Peraire, and J. K. White, A combined pFFT-multipole tree
Methods Fluids. 53(8), 1399–1422, (2007).