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Why Meshing Matters

@ Discretizes domains for numerical simulation.
@ Crucial for PDEs, Fluid Dynamics, and Graphics.
@ Quality dictates accuracy and stability.

Limitations of Classical Algorithms

@ Standard methods (e.g., Delaunay) are rigid.
@ Rely on complex, human-designed heuristics.
@ Complex geometries often require manual tuning.

The Machine Learning Paradigm

@ Can we replace fixed rules with learned policies?

@ Treat generation as a Sequential Decision Process.
@ Goal: Train an RL agent to “play the game.”



We explore two different “games” for the Reinforcement Learning agent:
Part I: Topology Optimization (The Connectivity Game)
@ Focus: Optimizing the graph structure.
@ Actions: Edge flips and topological moves.
@ Geometry: Vertex positions are secondary.
@ Goal: Perfect node regularity (valency).

@ Result: Structured Quad and Tri meshes.

Part Il: Node Placement Strategy (The Geometry Game)
@ Focus: Optimizing vertex distribution.

@ Actions: Continuous move, insert, delete.
@ Topology: Handled by Delaunay algorithm.
@ Goal: Optimal resolution and sizing.

@ Result: Adaptive meshes for 2D domains.



Part I: Topology Optimization



@ Define a “game” for automatic block mesh improvement:
@ “Moves”: Local or global topological operations (e.g. “flips”)
e “Score”: Measure of irregularity of the mesh s = Z |A]

@ Use a half-edge mesh structure to define a CNN—ti/pe network which extends to fully
unstructured quadrilateral meshes

@ Train on random geometries, using the PPO algorithm on GPUs

@ Consistently produces close-to-optimal meshes
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[1] Narayanan, Pan, Persson. Learning topological operations on meshes with application to block
decomposition of polygons. Computer-Aided Design, Vol. 175, pp. 103744 (2024). arXiv:2309.06484.




Live Mesh Demo
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Given:
@ Mesh m

@ Desired degree of vertices d*:

e 360/ interior vertex
max (|6/a] +1,2) boundary vertex

where o = 60 for triangles, 90 for quads,
and ¢ is the angle of a boundary point.

@ Define A; =d; — dz*
minimize s = > |A|




Note that:

o S*:‘ZA,' §Z|A,|=S

@ s* is invariant under mesh edits.

This means s* is a bound on the best possible
improved mesh — use for a normalized opti-
mality score.




The problem poses several challenges:
@ Discrete decisions
@ Fully unstructured
@ Dynamic data-structure
Solution methods need to be able to:
@ Represent and understand mesh topology

@ Efficiently implement mesh edits




Action: Half-edge + type




IS Ions uscd (o ropresent state

Template: Ordered sequence of vertices around each half-edge




@ State: Irregularity and degree of vertices in template
@ Action: Flip, split, collapse, etc.
@ Reward: r, = s, — s:41
Training procedure:
@ Generate random 10-30 sided polygons
@ Initial mesh by Delaunay refinement, split using Catmull-Clark for quads
@ Terminate if s* = s or @ maximum number of steps taken

@ Monitor normalized returns
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Trained in self-play by Proximal Policy Optimization (PPO) algorithm

Schulman, John, et al. Proximal policy optimization algorithms arXiv:1707.06347 (2017).
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Triangular meshing
Example 1
Step 0 (out of 27)




Triangular meshing
Example 1
Step 1 (out of 27)




Triangular meshing
Example 1
Step 2 (out of 27)




Triangular meshing
Example 1
Step 3 (out of 27)
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Triangular meshing
Example 1
Step 11 (out of 27)




Triangular meshing
Example 1
Step 12 (out of 27)




Triangular meshing
Example 1
Step 13 (out of 27)




Triangular meshing
Example 1
Step 14 (out of 27)




Triangular meshing
Example 1
Step 15 (out of 27)




Triangular meshing
Example 1
Step 16 (out of 27)




Triangular meshing
Example 1
Step 17 (out of 27)
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Triangular meshing
Example 1
Step 18 (out of 27)




Triangular meshing
Example 1
Step 19 (out of 27)




Triangular meshing
Example 1
Step 20 (out of 27)




Triangular meshing
Example 1
Step 21 (out of 27)




Triangular meshing
Example 1
Step 22 (out of 27)




Triangular meshing
Example 1
Step 23 (out of 27)




Triangular meshing
Example 1
Step 24 (out of 27)




Triangular meshing
Example 1
Step 25 (out of 27)




Triangular meshing
Example 1
Step 26 (out of 27)




Triangular meshing
Example 1
Step 27 (out of 27)
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Block mesh decomposition
Example 1
Step 2 (out of 19)
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Block mesh decomposition
Example 1
Step 3 (out of 19)
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Block mesh decomposition
Example 1
Step 4 (out of 19)
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Block mesh decomposition
Example 1
Step 5 (out of 19)
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Block mesh decomposition
Example 1
Step 6 (out of 19)
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Block mesh decomposition
Example 1
Step 7 (out of 19)
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Block mesh decomposition
Example 1
Step 8 (out of 19)
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Block mesh decomposition
Example 1
Step 9 (out of 19)
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Block mesh decomposition
Example 1
Step 10 (out of 19)
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Block mesh decomposition
Example 1
Step 11 (out of 19)
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Block mesh decomposition
Example 1
Step 12 (out of 19)
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Block mesh decomposition
Example 1
Step 13 (out of 19)
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Block mesh decomposition
Example 1
Step 14 (out of 19)
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Block mesh decomposition
Example 1
Step 15 (out of 19)
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Block mesh decomposition
Example 1
Step 16 (out of 19)
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Block mesh decomposition
Example 1
Step 17 (out of 19)
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Block mesh decomposition
Example 1
Step 18 (out of 19)
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Block mesh decomposition
Example 1
Step 19 (out of 19)
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Block mesh decomposition
Example 2
Step 2 (out of 12)
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Block mesh decomposition
Example 2
Step 3 (out of 12)
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Block mesh decomposition
Example 2
Step 4 (out of 12)
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Block mesh decomposition
Example 2
Step 5 (out of 12)
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Block mesh decomposition
Example 2
Step 6 (out of 12)
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Block mesh decomposition
Example 2
Step 7 (out of 12)
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Block mesh decomposition
Example 2
Step 8 (out of 12)
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Block mesh decomposition
Example 2
Step 9 (out of 12)
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Block mesh decomposition
Example 2
Step 10 (out of 12)
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Block mesh decomposition
Example 2
Step 11 (out of 12)
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Block mesh decomposition
Example 2
Step 12 (out of 12)
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Part ll: Node Placement Strategy



@ Previous work focused on topology of the mesh, with node positions determined
using some smoothing procedure

@ Here, we study the capability of deep networks to also determine the node positions
@ Ultimately, the two components should be combined into a complete mesh generator

@ For now, we hard-wire the topologies to be Delaunay triangulations



@ Formulate mesh generation as a sequential decision-making problem.

@ Define a parametric strategy (a policy) for mesh operations:
e Move, add, and delete vertices.

@ Use a Graph Neural Network (GNN) with encoder/decoder and convolutional layers
e Encodes vertex neighborhoods and mesh topology.
e Outputs vertex modification actions.

@ Use reinforcement learning to optimize this strategy.

@ Objective: maximize quality metric over generated meshes.



@ State s = (V',£"): the mesh at timestep ¢

@ Policy my: maps s’ to a distribution over actions a'

@ Environment applies a' to get new vertex list {x/*'} and triangulation {7/}
@ Sequence s,s!, ..., s" forms a trajectory =

@ Trajectories 7 are sampled from a distribution pg(7)



At each timestep, actions may include:
@ Move any non-boundary node
@ Delete any non-boundary node
© Add new vertex at midpoint of any edge

© Add new vertex at centroid of any triangle

@ Action space depends on the current state s

@ Policy is stochastic: outputs a distribution over actions



Figure: Mesh generation step: Updated node positions and action variables are sampled from
mg(a'ls"). Nodes are moved, added and deleted accordingly. The node in blue is deleted and the
orange node is added at the midpoint of an existing edge.



Each mesh state s’ is evaluated using four quality metrics. Meshes are normalized so that
the target edge length is 1 and the target element volume is v/3/4.

@ Edge length: g.(e;) =1 — |1 — [lxi — ;]|
e Angle Qa(’Yl) =1— |'"Y] I'Yl|
: _ 1 _ LTd=v3/4]
© Volume: ¢,(Ty) =1 "\/5/4
© Shape: ¢,(Ty) =2 - 2~

Pout



@ Total score S(s") = weighted average of metric norms

@ Reward at timestep «:
r=S(s") = S(s)

@ Trajectory reward:

n

R(T) = Zr’ = S(s")

t=1

@ Objective:
max Eqnpy [ErvpR(7)



Mesh State Encoder Decoder
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Overview of the mesh generator architecture.

@ Mesh is represented as a graph:

@ Vertices — nodes
o Edges — edges

@ GNN modifies the vertex set:
@ Moves existing vertices
o Adds or deletes vertices
@ Delaunay triangulation creates
updated mesh

@ Process iterated multiple times

@ GNN trained via reinforcement
learning to optimize mesh quality



Node updates at each layer:
5 Properties of the GNN Architecture:
mij = Ge(2i, 7y, [Ixi — xi1°)

@ Rotation- and translation-equivariant updates

Ax;j = (x; — x;j) tanh qZ)c(mij)
@ Interior equilateral regions remain unchanged
xi < x;i + 1o(b;) ‘ " ZAXU

b= @ Inspired by the update rule in DistMesh

JEN;

Zi < ¢n (Zh | | Zml]
1

) @ Fully differentiable via automatic differentiation



@ Decoder maps feature z; to:

[-xi7 ai,d7 ai,67 ai,h O-l',xy Ui,oz]

@ Sampled from independent Gaussians
@ Actions based on thresholds:
@ a;4 < v: delete node

® «;., o, insert edge/triangle point if under v

@ v = 1/4in all experiments



@ Alternate between:
e Sampling trajectories
e Updating policy parameters 6 using PPO
@ Optimize advantage function
Ap(s',al) =: Q(s",a) — V(s"), measuring
the difference in expected reward over the
remainder of the trajectory between action
af, and current policy
@ Value function V(s') trained as a GNN
with same architecture as policy

Implementation details:

@ PPO implementation via RLlib

@ GNN built with PyTorch Geometric
@ All networks use:

@ One hidden layer MLPs
@ Swish activation

@ Single-precision used throughout



Training Phase | Il 11 \Y, \Y
Polygon scaling 2 25 3 3.5 4
Num. side range | 5-10 | 5-12 | 5-14 | 5-16 | 5-18
Trajectory length 5 6 7 8 9
Entropy Coef. 1e-2 | 1e-3 1le-4 | 1e-5 | 1e-6
Learning rate 1e-5 | 1.5e-5 | 2e-5 | 2.5e-5 | 3e-5
PPO ¢ A 15 2 .25 3
Num. PPO It. 200 200 200 200 200
Epoch/It. 10 10 10 10 10
Trajectory/It. 300 300 300 300 300

@ 5 training phases

@ Increasing domain size and
complexity

@ Adaptive learning rate and PPO ¢

@ Entropy coefficient decreases to
stabilize policy



Mean Return over PPO lterations

[ 200 400 600 800 1000
PPO lteration

@ Effect of GNN depth and width

@ Best:{=2,d=8and/=4,d =16

@ Baseline: /1 =2,d =38

@ Training does not always correlate with
eval
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RL Mesh step 15

7.5 A

5.0 A

2.5 A

0.0 -

—2.5

—-5.0 1

—-7.54

-7.5 -5.0 =25

0.0

25

5.0

7.5

10.0




40 A

30 1

20 1

—10 A

_20 4

_30 -

—40

-30

=20

-10




40 A

30 1

20 1

—10 A

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




40 A

30 1

20 1

_10 <

_20 4

_30 -

-40

-30

=20

-10




d | ¢] 0] | ga(Mean) | gq(Min) | g (SD) | . (Mean) | g. (Min) | g. (SD) | g, (Mean) | g, (Min) | ¢ (SD) | ¢, (Mean) | g, (Min) | g, (SD)
4 | 2| 1107 0.841 0.111 | 0.133 | 0582 | -0.252 | 0.256 | 0.936 | 0.582 | 0.070 | 0.089 | -1.976 | 0.632
8 |2| 3791 0.860 | 0.198 | 0.118 | 0.862 | 0.327 | 0.114 | 0.948 | 0.619 | 0.060 | 0.779 | -0.127 | 0.182
16 | 2| 13959 | 0.821 0.100 | 0.136 | 0.857 | 0.359 | 0.110 | 0.922 | 0.552 | 0.073 | 0795 | -0.067 | 0.161
32| 2| 53495 | 0.839 | 0.180 | 0.123 | 0.877 | 0.497 | 0.092 | 0.936 | 0590 | 0.062 | 0857 | 0.293 | 0.119
4 | 4] 2029 0.836 | 0.102 | 0.131 0.853 | 0.404 | 0.111 | 0932 | 0.544 | 0.071 | 0765 | 0.079 | 0.1599
8 | 4| 7033 0.824 | 0.041 | 0.136 | 0.873 | 0425 | 0.098 | 0924 | 0.494 | 0.075 | 0.821 0.338 | 0.130
16 |4 | 26065 | 0.839 | 0.191 | 0.123 | 0.883 | 0.519 | 0.089 | 0.936 | 0.597 | 0.062 | 0.865 | 0.388 | 0.108
32| 4|100225 | 0.826 | 0.101 | 0.133 | 0873 | 0.366 | 0.102 | 0.926 | 0.556 | 0.070 | 0.842 | 0.028 | 0.144

@ Bestg.: t=4,d=16
@ Bestg,:(=2,d=38

@ Tradeoff: performance vs. size



Det. | wa | wr | we | wy | ga (Mean) | g (Min) | go (SD) | g (Mean) | g. (Min) | g. (SD) | g, (Mean) | g, (Min) | g, (SD) | ¢, (Mean) | g, (Min) | ¢, (SD)
Y |5]0|5| 0| 080 | 0198 | 0.118 | 0862 | 0327 | 0.114 | 0948 | 0619 | 0.060 | 0779 | -0.127 | 0.182
N | 5]0|.5]|0]| 084 0.043 | 0129 | 0847 | 0378 | 0.113 | 0.936 | 0.484 | 0.070 | 0.751 0.137 | 0.170
Y |o]o0o|1|o0| 087 | 0202 | 0121 | 0.868 | 0.394 | 0106 | 0945 | 0597 | 0.062 | 0794 | 0.101 | 0.158
N | 0|0 |1 |0| 0846 | 0045 | 0127 | 0855 | 0382 | 0112 | 0939 | 0485 | 0.069 | 0767 | 0.111 | 0.167
Y | o|o0o|o0 |1 0.827 | 0140 | 0.132 | 0765 | 0082 | 0.166 | 0928 | 0.605 | 0.068 | 0.588 | -0.841 | 0.291
N |ojo|o|1 0.827 | -0.226 | 0.139 | 0.877 | 0.331 | 0.097 | 0925 | 0.261 | 0.085 | 0.864 | 0.225 | 0.116
Y | 25|.25|.25| 25| 0823 | 0.462 | 0.134 | 0.690 | 0063 | 0.195 | 0924 | 0.609 | 0.070 | 0401 | -0.897 | 0.350
N | 25| .25|.25|.25| 0836 | -0.020 | 0.129 | 0.846 | 0.367 | 0.115 | 0.934 | 0.451 | 0.070 | 0776 | -0.012 | 0.173

@ Reward: w,q, + weqe + Wrqr + wiqy

@ Tailored reward improves specific metrics

@ Stochastic policies can outperform deterministic
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@ Left: w, = w, = 0.5, deterministic
@ Right: w, = 1, stochastic
@ Volume uniformity vs. shape quality
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DistMesh for comparison

@ Trained on constant size, but generalizes to variable A(x)
@ DistMesh outperforms on complex geometries
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New method

@ Complex curved geometry with sharp trailing
edge

@ RL-generated mesh: mostly acceptable, room
for refinement

@ DistMesh achieves higher quality around
boundary



BRI rA Future Directions

Summary of Contributions
@ New Paradigm: Formulated meshing as a sequential “game” (RL).
@ Topology (Part I): Learned optimal connectivity for Tri/Quad meshes.
@ Geometry (Part Il): Learned node placement with Delaunay constraints.

@ Result: Heuristic-free agents that rival classical algorithms.

Future Work
@ 3D Generation: Extension to tetrahedral and hexahedral elements.
@ Unified Policy: Learning topology and geometry simultaneously.
@ Advanced RL: Integrating Monte Carlo Tree Search (MCTS).

@ Complexity: Improving performance on variable-resolution domains.
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