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From Heuristics to Learning: The Meshing Challenge
Why Meshing Matters

Discretizes domains for numerical simulation.

Crucial for PDEs, Fluid Dynamics, and Graphics.

Quality dictates accuracy and stability.

Limitations of Classical Algorithms

Standard methods (e.g., Delaunay) are rigid.

Rely on complex, human-designed heuristics.

Complex geometries often require manual tuning.

The Machine Learning Paradigm

Can we replace fixed rules with learned policies?

Treat generation as a Sequential Decision Process.

Goal: Train an RL agent to “play the game.”



Two Strategies for Learning Meshes

We explore two different “games” for the Reinforcement Learning agent:

Part I: Topology Optimization (The Connectivity Game)
Focus: Optimizing the graph structure.

Actions: Edge flips and topological moves.

Geometry: Vertex positions are secondary.

Goal: Perfect node regularity (valency).

Result: Structured Quad and Tri meshes.

Part II: Node Placement Strategy (The Geometry Game)
Focus: Optimizing vertex distribution.

Actions: Continuous move, insert, delete.

Topology: Handled by Delaunay algorithm.

Goal: Optimal resolution and sizing.

Result: Adaptive meshes for 2D domains.



Part I: Topology Optimization



Deep Reinforcement Learning for Block Meshing

Define a “game” for automatic block mesh improvement:
“Moves”: Local or global topological operations (e.g. “flips”)
“Score”: Measure of irregularity of the mesh s =

∑
i

|∆i|

Use a half-edge mesh structure to define a CNN-type network which extends to fully

unstructured quadrilateral meshes

Train on random geometries, using the PPO algorithm on GPUs

Consistently produces close-to-optimal meshes

[1] Narayanan, Pan, Persson. Learning topological operations on meshes with application to block

decomposition of polygons. Computer-Aided Design, Vol. 175, pp. 103744 (2024). arXiv:2309.06484.



Live Mesh Demo



Basic idea of reinforcement learning



Reinforcement Learning, Solutions Methods



Some Useful Terminology



Objective function



Estimating gradient of objective



Mesh editing operations - triangles

Edge-flip Edge-split

Collapse



Mesh editing operations - quadrilaterals, local

Flip Split-Collapse



Mesh editing operations - quadrilaterals, global

Global Split Global Cleanup



Objective: minimize vertex irregularity

Given:

Mesh m

Desired degree of vertices d∗:

d∗ =

360/α interior vertex

max (⌊θ/α⌉+ 1, 2) boundary vertex

where α = 60 for triangles, 90 for quads,

and θ is the angle of a boundary point.

Define ∆i = di − d∗
i

minimize s =
∑

i

|∆i|



Lower bound on objective function

Note that:

s∗ =

∣∣∣∣∣∑
i

∆i

∣∣∣∣∣ ≤∑
i

|∆i| = s

s∗ is invariant under mesh edits.

This means s∗ is a bound on the best possible

improved mesh =⇒ use for a normalized opti-

mality score.



Challenging, unstructured problem

The problem poses several challenges:

Discrete decisions

Fully unstructured

Dynamic data-structure

Solution methods need to be able to:

Represent and understand mesh topology

Efficiently implement mesh edits



Half-edges represent topology in a structured way



Half-edge operations used to represent state

Template: Ordered sequence of vertices around each half-edge
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In the language of reinforcement learning

State: Irregularity and degree of vertices in template

Action: Flip, split, collapse, etc.

Reward: rt = st − st+1

Training procedure:

Generate random 10-30 sided polygons

Initial mesh by Delaunay refinement, split using Catmull-Clark for quads

Terminate if s∗ = s or a maximum number of steps taken

Monitor normalized returns



Neural network learns a mesh edit policy

Trained in self-play by Proximal Policy Optimization (PPO) algorithm

Schulman, John, et al. Proximal policy optimization algorithms arXiv:1707.06347 (2017).



Results: Triangular Meshes
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Results: Triangular Meshing

Triangular meshing
Example 1

Step 0 (out of 27)



Results: Triangular Meshing

Triangular meshing
Example 1

Step 1 (out of 27)



Results: Triangular Meshing

Triangular meshing
Example 1

Step 2 (out of 27)



Results: Triangular Meshing

Triangular meshing
Example 1

Step 3 (out of 27)



Results: Triangular Meshing

Triangular meshing
Example 1

Step 4 (out of 27)



Results: Triangular Meshing

Triangular meshing
Example 1
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Results: Triangular Meshing

Triangular meshing
Example 1

Step 6 (out of 27)



Results: Triangular Meshing

Triangular meshing
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Results: Triangular Meshing

Triangular meshing
Example 1

Step 8 (out of 27)



Results: Triangular Meshing

Triangular meshing
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Results: Triangular Meshing

Triangular meshing
Example 1

Step 10 (out of 27)



Results: Triangular Meshing

Triangular meshing
Example 1

Step 11 (out of 27)



Results: Triangular Meshing

Triangular meshing
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Triangular meshing
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Triangular meshing
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Results: Triangular Meshing

Triangular meshing
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Results: Triangular Meshing

Triangular meshing
Example 1
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Results: Triangular Meshing

Triangular meshing
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Triangular meshing
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Results: Triangular Meshing

Triangular meshing
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Results: Triangular Meshing

Triangular meshing
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Results: Triangular Meshing

Triangular meshing
Example 1
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Results: Triangular Meshing

Triangular meshing
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Results: Triangular Meshing

Triangular meshing
Example 1

Step 24 (out of 27)



Results: Triangular Meshing

Triangular meshing
Example 1

Step 25 (out of 27)



Results: Triangular Meshing

Triangular meshing
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Results: Triangular Meshing

Triangular meshing
Example 1

Step 27 (out of 27)



Triangular meshing example: 20-sided polygon
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Results: Quadrilateral Meshes
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Results: Quadrilateral block meshing

Block mesh decomposition
Example 1

Step 0 (out of 19)



Results: Quadrilateral block meshing

Block mesh decomposition
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Step 1 (out of 19)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 1

Step 2 (out of 19)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 1

Step 3 (out of 19)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 1

Step 4 (out of 19)
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Results: Quadrilateral block meshing

Block mesh decomposition
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Results: Quadrilateral block meshing

Block mesh decomposition
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Block mesh decomposition
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Results: Quadrilateral block meshing

Block mesh decomposition
Example 1

Step 10 (out of 19)



Results: Quadrilateral block meshing

Block mesh decomposition
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Block mesh decomposition
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Step 13 (out of 19)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 1
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Results: Quadrilateral block meshing

Block mesh decomposition
Example 1
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Results: Quadrilateral block meshing

Block mesh decomposition
Example 1
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Results: Quadrilateral block meshing

Block mesh decomposition
Example 1

Step 17 (out of 19)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 1
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Results: Quadrilateral block meshing

Block mesh decomposition
Example 1
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Results: Quadrilateral block meshing

Block mesh decomposition
Example 2

Step 0 (out of 12)



Results: Quadrilateral block meshing

Block mesh decomposition
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Results: Quadrilateral block meshing

Block mesh decomposition
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Results: Quadrilateral block meshing

Block mesh decomposition
Example 2

Step 3 (out of 12)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 2

Step 4 (out of 12)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 2

Step 5 (out of 12)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 2

Step 6 (out of 12)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 2

Step 7 (out of 12)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 2

Step 8 (out of 12)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 2

Step 9 (out of 12)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 2

Step 10 (out of 12)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 2

Step 11 (out of 12)



Results: Quadrilateral block meshing

Block mesh decomposition
Example 2

Step 12 (out of 12)



Block decomposition example: 10-sided polygon
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Block decomposition example: 20-sided polygon
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Block decomposition example: L-shaped domain
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Block decomposition example: Star-shaped domain
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Block decomposition example: Notch domain
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Block decomposition example: Double notch domain
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Block decomposition example: Square hole in circle domain
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Part II: Node Placement Strategy



Extension to ML-based node positions

Previous work focused on topology of the mesh, with node positions determined

using some smoothing procedure

Here, we study the capability of deep networks to also determine the node positions

Ultimately, the two components should be combined into a complete mesh generator

For now, we hard-wire the topologies to be Delaunay triangulations



A Learning-Based Approach

Formulate mesh generation as a sequential decision-making problem.

Define a parametric strategy (a policy) for mesh operations:

Move, add, and delete vertices.

Use a Graph Neural Network (GNN) with encoder/decoder and convolutional layers

Encodes vertex neighborhoods and mesh topology.
Outputs vertex modification actions.

Use reinforcement learning to optimize this strategy.

Objective: maximize quality metric over generated meshes.



Reinforcement Learning Formulation

State st = (V t, E t): the mesh at timestep t

Policy πθ: maps st to a distribution over actions at

Environment applies at to get new vertex list {xt+1
i } and triangulation {T t+1

k }

Sequence s0, s1, . . . , sn forms a trajectory τ

Trajectories τ are sampled from a distribution pθ(τ)



Action Space

At each timestep, actions may include:

1 Move any non-boundary node

2 Delete any non-boundary node

3 Add new vertex at midpoint of any edge

4 Add new vertex at centroid of any triangle

Action space depends on the current state st

Policy is stochastic: outputs a distribution over actions



Trajectory Visualization
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Figure: Mesh generation step: Updated node positions and action variables are sampled from
πθ(at|st). Nodes are moved, added and deleted accordingly. The node in blue is deleted and the
orange node is added at the midpoint of an existing edge.



Mesh Quality Metrics

Each mesh state st is evaluated using four quality metrics. Meshes are normalized so that

the target edge length is 1 and the target element volume is
√

3/4.

1 Edge length: qe(eij) = 1− |1− ∥xi − xj∥|
2 Angle: qa(γl) = 1− |γ∗

l −γl|
γ∗

l

3 Volume: qv(Tk) = 1− | |Tk|−
√

3/4|√
3/4

4 Shape: qr(Tk) = 2 · ρin
ρout



Reward and Optimization Objective

Total score S(st) = weighted average of metric norms

Reward at timestep t:

rt = S(st+1)− S(st)

Trajectory reward:

R(τ) =
n∑

t=1

rt = S(sn)

Objective:

max
θ

EΩ∼pD [Eτ∼pθR(τ)]



Mesh Generator Architecture

Mesh State
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|𝑁𝑖 |

∑
𝑗 Δ𝑥𝑖 𝑗 𝑧𝑖← 𝜙𝑛

(
𝑧𝑖 ,

1
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∑
𝑗 𝑚𝑖 𝑗
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Action Sampling

Overview of the mesh generator architecture.

Mesh is represented as a graph:

Vertices→ nodes
Edges→ edges

GNN modifies the vertex set:

Moves existing vertices
Adds or deletes vertices

Delaunay triangulation creates

updated mesh

Process iterated multiple times

GNN trained via reinforcement

learning to optimize mesh quality



Graph Neural Network: Convolution

Node updates at each layer:

mij = ϕe(zi, zj, ∥xi − xj∥2)

∆xij = (xi − xj) tanhϕc(mij)

xi ← xi + 10(bi) ·
1
|Ni|

∑
j∈Ni

∆xij

zi ← ϕn

zi,
1
|Ni|

∑
j∈Ni

mij



Properties of the GNN Architecture:

Rotation- and translation-equivariant updates

Interior equilateral regions remain unchanged

Inspired by the update rule in DistMesh

Fully differentiable via automatic differentiation



Decoder and Action Sampling

Decoder maps feature zi to:

[xi, αi,d, αi,e, αi,t, σi,x, σi,α]

Sampled from independent Gaussians

Actions based on thresholds:

αi,d < ν: delete node
αi,e, αi,t: insert edge/triangle point if under ν

ν = 1/4 in all experiments



Training with PPO
Alternate between:

Sampling trajectories
Updating policy parameters θ using PPO

Optimize advantage function

Aθ(st, at
0) =: Q(st, at

0)− V(st), measuring

the difference in expected reward over the

remainder of the trajectory between action

at
0 and current policy

Value function Vϕ(st) trained as a GNN

with same architecture as policy

Implementation details:

PPO implementation via RLlib

GNN built with PyTorch Geometric

All networks use:

One hidden layer MLPs
Swish activation

Single-precision used throughout



Training Curriculum

Training Phase I II III IV V

Polygon scaling 2 2.5 3 3.5 4

Num. side range 5-10 5-12 5-14 5-16 5-18

Trajectory length 5 6 7 8 9

Entropy Coef. 1e-2 1e-3 1e-4 1e-5 1e-6

Learning rate 1e-5 1.5e-5 2e-5 2.5e-5 3e-5

PPO ϵ .1 .15 .2 .25 .3

Num. PPO It. 200 200 200 200 200

Epoch/It. 10 10 10 10 10

Trajectory/It. 300 300 300 300 300

5 training phases

Increasing domain size and

complexity

Adaptive learning rate and PPO ϵ

Entropy coefficient decreases to

stabilize policy



Model Size Experiment: Training Reward

Effect of GNN depth and width

Best: ℓ = 2, d = 8 and ℓ = 4, d = 16

Baseline: ℓ = 2, d = 8

Training does not always correlate with

eval
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Model Size: Quality Metrics

d ℓ |θ| qa (Mean) qa (Min) qa (SD) qe (Mean) qe (Min) qe (SD) qr (Mean) qr (Min) qr (SD) qv (Mean) qv (Min) qv (SD)

4 2 1107 0.841 0.111 0.133 0.582 -0.252 0.256 0.936 0.582 0.070 0.089 -1.976 0.632

8 2 3791 0.860 0.198 0.118 0.862 0.327 0.114 0.948 0.619 0.060 0.779 -0.127 0.182

16 2 13959 0.821 0.100 0.136 0.857 0.359 0.110 0.922 0.552 0.073 0.795 -0.067 0.161

32 2 53495 0.839 0.180 0.123 0.877 0.497 0.092 0.936 0.590 0.062 0.857 0.293 0.119

4 4 2029 0.836 0.102 0.131 0.853 0.404 0.111 0.932 0.544 0.071 0.765 0.079 0.1599

8 4 7033 0.824 0.041 0.136 0.873 0.425 0.098 0.924 0.494 0.075 0.821 0.338 0.130

16 4 26065 0.839 0.191 0.123 0.883 0.519 0.089 0.936 0.597 0.062 0.865 0.388 0.108

32 4 100225 0.826 0.101 0.133 0.873 0.366 0.102 0.926 0.556 0.070 0.842 0.028 0.144

Best qe: ℓ = 4, d = 16

Best qa: ℓ = 2, d = 8

Tradeoff: performance vs. size



Reward Function Variation

Det. wa wr we wv qa (Mean) qa (Min) qa (SD) qe (Mean) qe (Min) qe (SD) qr (Mean) qr (Min) qr (SD) qv (Mean) qv (Min) qv (SD)

Y .5 0 .5 0 0.860 0.198 0.118 0.862 0.327 0.114 0.948 0.619 0.060 0.779 -0.127 0.182

N .5 0 .5 0 0.841 0.043 0.129 0.847 0.378 0.113 0.936 0.484 0.070 0.751 0.137 0.170

Y 0 0 1 0 0.857 0.202 0.121 0.868 0.394 0.106 0.945 0.597 0.062 0.794 0.101 0.158

N 0 0 1 0 0.846 0.045 0.127 0.855 0.382 0.112 0.939 0.485 0.069 0.767 0.111 0.167

Y 0 0 0 1 0.827 0.140 0.132 0.765 0.082 0.166 0.928 0.605 0.068 0.588 -0.841 0.291

N 0 0 0 1 0.827 -0.226 0.139 0.877 0.331 0.097 0.925 0.261 0.085 0.864 0.225 0.116

Y .25 .25 .25 .25 0.823 0.162 0.134 0.690 0.063 0.195 0.924 0.609 0.070 0.401 -0.897 0.350

N .25 .25 .25 .25 0.836 -0.020 0.129 0.846 0.367 0.115 0.934 0.451 0.070 0.776 -0.012 0.173

Reward: waqa + weqe + wrqr + wvqv

Tailored reward improves specific metrics

Stochastic policies can outperform deterministic



Visual Effect of Reward Variation

Left: wa = we = 0.5, deterministic

Right: wv = 1, stochastic

Volume uniformity vs. shape quality



Example: Size function
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Mesh Generation with Size Function

Proposed method DistMesh for comparison

Trained on constant size, but generalizes to variable h(x)

DistMesh outperforms on complex geometries



Example: NACA Airfoil Mesh
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NACA Airfoil Mesh

New method DistMesh

Complex curved geometry with sharp trailing

edge

RL-generated mesh: mostly acceptable, room

for refinement

DistMesh achieves higher quality around

boundary



Conclusions and Future Directions

Summary of Contributions

New Paradigm: Formulated meshing as a sequential “game” (RL).

Topology (Part I): Learned optimal connectivity for Tri/Quad meshes.

Geometry (Part II): Learned node placement with Delaunay constraints.

Result: Heuristic-free agents that rival classical algorithms.

Future Work

3D Generation: Extension to tetrahedral and hexahedral elements.

Unified Policy: Learning topology and geometry simultaneously.

Advanced RL: Integrating Monte Carlo Tree Search (MCTS).

Complexity: Improving performance on variable-resolution domains.
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